Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Swift

You're reading from   Machine Learning with Swift Artificial Intelligence for iOS

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781787121515
Length 378 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Jojo Moolayil Jojo Moolayil
Author Profile Icon Jojo Moolayil
Jojo Moolayil
Oleksandr Baiev Oleksandr Baiev
Author Profile Icon Oleksandr Baiev
Oleksandr Baiev
Alexander Sosnovshchenko Alexander Sosnovshchenko
Author Profile Icon Alexander Sosnovshchenko
Alexander Sosnovshchenko
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Machine Learning FREE CHAPTER 2. Classification – Decision Tree Learning 3. K-Nearest Neighbors Classifier 4. K-Means Clustering 5. Association Rule Learning 6. Linear Regression and Gradient Descent 7. Linear Classifier and Logistic Regression 8. Neural Networks 9. Convolutional Neural Networks 10. Natural Language Processing 11. Machine Learning Libraries 12. Optimizing Neural Networks for Mobile Devices 13. Best Practices

Building the network


When you first encounter a variety of architectures of CNNs, you feel overwhelmed by the abundance of new terms, different layers, and their hyperparameters. In fact, at the moment, only a few architectures have found broad application, and the number of designs suitable for mobile development is even smaller.

There are five basic types of layers plus an input layer, which usually does nothing except passing data forward:

  • Input layer: The first layer in the neural network. It does nothing, only takes the input and passes it downstream.
  • Convolution layers: Where convolutions happen
  • Fully: Connected or dense layers
  • Nonlinearity layers: These are layers which apply activation functions to the output of the previous layer: sigmoid, ReLU, tanh, softmax and so on.
  • Pooling layers: Downsample their input.
  • Regularization layers: layers to fight an overfitting.

Note

Modern deep learning frameworks contain much more different types of layers for all needs, but these are the most commonly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime