In the previous section, we arbitrarily set the number of neighbors to three while initializing the k-NN classifier. However, is this the optimal value? Well, it could be, since we obtained a relatively high accuracy score in the test set.
Our goal is to create a machine learning model that does not overfit or underfit the data. Overfitting the data means that the model has been trained very specifically to the training examples provided and will not generalize well to cases/examples of data that it has not encountered before. For instance, we might have fit the model very specifically to the training data, with the test cases being also very similar to the training data. Thus, the model would have been able to perform very well and produce a very high value of accuracy.
Underfitting is another extreme case, in which the model...