Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with PyTorch and Scikit-Learn

You're reading from   Machine Learning with PyTorch and Scikit-Learn Develop machine learning and deep learning models with Python

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801819312
Length 774 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using Scikit-Learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Predicting Continuous Target Variables with Regression Analysis 10. Working with Unlabeled Data – Clustering Analysis 11. Implementing a Multilayer Artificial Neural Network from Scratch 12. Parallelizing Neural Network Training with PyTorch 13. Going Deeper – The Mechanics of PyTorch 14. Classifying Images with Deep Convolutional Neural Networks 15. Modeling Sequential Data Using Recurrent Neural Networks 16. Transformers – Improving Natural Language Processing with Attention Mechanisms 17. Generative Adversarial Networks for Synthesizing New Data 18. Graph Neural Networks for Capturing Dependencies in Graph Structured Data 19. Reinforcement Learning for Decision Making in Complex Environments 20. Other Books You May Enjoy
21. Index

Introducing the bag-of-words model

You may remember from Chapter 4, Building Good Training Datasets – Data Preprocessing, that we have to convert categorical data, such as text or words, into a numerical form before we can pass it on to a machine learning algorithm. In this section, we will introduce the bag-of-words model, which allows us to represent text as numerical feature vectors. The idea behind bag-of-words is quite simple and can be summarized as follows:

  1. We create a vocabulary of unique tokens—for example, words—from the entire set of documents.
  2. We construct a feature vector from each document that contains the counts of how often each word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the words in the bag-of-words vocabulary, the feature vectors will mostly consist of zeros, which is why we call them sparse. Do not worry if this sounds too abstract; in the following...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime