Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Model Serving Patterns and Best Practices

You're reading from   Machine Learning Model Serving Patterns and Best Practices A definitive guide to deploying, monitoring, and providing accessibility to ML models in production

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803249902
Length 336 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Md Johirul Islam Md Johirul Islam
Author Profile Icon Md Johirul Islam
Md Johirul Islam
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Part 1:Introduction to Model Serving
2. Chapter 1: Introducing Model Serving FREE CHAPTER 3. Chapter 2: Introducing Model Serving Patterns 4. Part 2:Patterns and Best Practices of Model Serving
5. Chapter 3: Stateless Model Serving 6. Chapter 4: Continuous Model Evaluation 7. Chapter 5: Keyed Prediction 8. Chapter 6: Batch Model Serving 9. Chapter 7: Online Learning Model Serving 10. Chapter 8: Two-Phase Model Serving 11. Chapter 9: Pipeline Pattern Model Serving 12. Chapter 10: Ensemble Model Serving Pattern 13. Chapter 11: Business Logic Pattern 14. Part 3:Introduction to Tools for Model Serving
15. Chapter 12: Exploring TensorFlow Serving 16. Chapter 13: Using Ray Serve 17. Chapter 14: Using BentoML 18. Part 4:Exploring Cloud Solutions
19. Chapter 15: Serving ML Models using a Fully Managed AWS Sagemaker Cloud Solution 20. Index 21. Other Books You May Enjoy

Using TensorFlow Serving to serve models

In this section, we will use TensorFlow Serving to serve models. First, we will use the recommended mechanism of using TensorFlow with Docker. The official page presenting this example is https://www.tensorflow.org/tfx/serving/docker.

TensorFlow Serving with Docker

Make sure Docker is installed on your platform. Follow the link provided in the Technical requirements section to start Docker. Now, let’s work through the following steps to serve our dummy example model:

  1. First of all, start Docker and make sure it is running. You can verify whether Docker is running by running the docker –version command in your operating system’s terminal. It should give you an output similar to the following:
    →  TF_SERVE docker --version
    Docker version 20.10.11, build dea9396
  2. Now, let’s pull the latest TensorFlow Docker image using the docker pull tensorflow/serving command. You should see the following...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime