Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Infrastructure and Best Practices for Software Engineers

You're reading from   Machine Learning Infrastructure and Best Practices for Software Engineers Take your machine learning software from a prototype to a fully fledged software system

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781837634064
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Miroslaw Staron Miroslaw Staron
Author Profile Icon Miroslaw Staron
Miroslaw Staron
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1:Machine Learning Landscape in Software Engineering
2. Machine Learning Compared to Traditional Software FREE CHAPTER 3. Elements of a Machine Learning System 4. Data in Software Systems – Text, Images, Code, and Their Annotations 5. Data Acquisition, Data Quality, and Noise 6. Quantifying and Improving Data Properties 7. Part 2: Data Acquisition and Management
8. Processing Data in Machine Learning Systems 9. Feature Engineering for Numerical and Image Data 10. Feature Engineering for Natural Language Data 11. Part 3: Design and Development of ML Systems
12. Types of Machine Learning Systems – Feature-Based and Raw Data-Based (Deep Learning) 13. Training and Evaluating Classical Machine Learning Systems and Neural Networks 14. Training and Evaluation of Advanced ML Algorithms – GPT and Autoencoders 15. Designing Machine Learning Pipelines (MLOps) and Their Testing 16. Designing and Implementing Large-Scale, Robust ML Software 17. Part 4: Ethical Aspects of Data Management and ML System Development
18. Ethics in Data Acquisition and Management 19. Ethics in Machine Learning Systems 20. Integrating ML Systems in Ecosystems 21. Summary and Where to Go Next 22. Index 23. Other Books You May Enjoy

Understanding the training process

From the software engineer’s perspective, the training process is rather simple – we fit the model, validate it, and use it. We check how good the model is in terms of the performance metrics. If the model is good enough, and we can explain it, then we develop the entire product around it, or we use it in a larger software product.

When the model does not learn anything useful, we need to understand why this is the case and whether there could be another model that can. We can use the visualization techniques we learned about in Chapter 6 to explore the data and clear it from noise using the techniques from Chapter 4.

Now, let’s explore the process of how the decision tree model learns from the data. The DecisionTree classifier learns from the provided data by recursively partitioning the feature space based on the values of the features in the training dataset. It constructs a binary tree where each internal node represents...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image