ML engineering in the real world
The majority of us who work in ML, analytics, and related disciplines do so for organizations with a variety of different structures and motives. These could be for for-profit corporations, not-for-profits, charities, or public sector organizations like government or universities. In pretty much all of these cases, we do not do this work in a vacuum and not with an infinite budget of time or resources. It is important, therefore, that we consider some of the important aspects of doing this type of work in the real world.
First of all, the ultimate goal of your work is to generate value. This can be calculated and defined in a variety of ways, but fundamentally your work has to improve something for the company or its customers in a way that justifies the investment put in. This is why most companies will not be happy for you to take a year to play with new tools and then generate nothing concrete to show for it, or to spend your days only reading...