Of course, not all data—and data analysis—is numeric. To address that gap, and inspired by the R language's dataframe objects, another package—pandas—was created by Wes McKinney in 2008. While it heavily relies on NumPy for numeric computations, its core interface objects are dataframes (2-dimensional multitype tables) and series (1-dimensional arrays). Dataframes, in comparison to NumPy matrices, don't require all data to be of the same type. On the contrary, they allow you to mix numeric values with Boolean, strings, DateTimes, and any other arbitrary Python objects. It does require (and enforce), however, the data type to be uniform vertically—within the same columns. Compared to NumPy, it also allows dataframe columns and rows to have arbitrary numeric or string names—or even hierarchical, multilevel...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand