Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Keras 2.x Projects
Keras 2.x Projects

Keras 2.x Projects: 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras

eBook
€8.99 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Keras 2.x Projects

Modeling Real Estate Using Regression Analysis

The real estate market is a type of market where the sales and purchases between sellers and buyers refer to the exchange of real estate of any kind, such as housing, land, commercial premises, and so on. Real estate prices depend on a series of factors that make the asset more palatable for potential buyers. Regression analysis is the statistical process of studying the relationship between a set of independent variables (explanatory variables) and the dependent variable (response variable). Through this technique, it is possible to understand how the value of the response variable changes when the explanatory variable is varied. In this chapter, the real estate market will be modeled through a regression analysis.

In this chapter, we will cover the following topics:

  • Defining a regression problem
  • Creating a linear regression model...

Defining a regression problem

Regression analysis is the starting point in data science. This is because regression models represent the most well-understood models in numerical simulation. Once we experience the workings of regression models, we will be able to understand all other machine learning algorithms. Regression models are easily interpretable as they are based on solid mathematical bases (such as matrix algebra, for example). In the following sections, we will see that linear regression allows us to derive a mathematical formula that's representative of the corresponding model. Perhaps this is why such techniques are extremely easy to understand.

Regression analysis is a statistical process that's implemented to study the relationship between a set of independent variables (explanatory variables) and the dependent variable (response variable). Through this...

Creating a linear regression model

A simple linear regression is easy to understand, but represents the basis of regression techniques. Once these concepts are understood, it will be easier for us to address the other types of regression. To begin with, let's take an example of applying linear regression that's been taken from the real world.

Consider some data that has been collected on a group of bikers, which consists of the following aspects:

  • Number of years of use
  • Number of kilometers traveled in one year
  • Number of falls

Through these techniques, we find that, on average, when the number of kilometers traveled increases, the number of falls also increases. By increasing the number of years of motorcycle usage and by increasing the experience, the number of falls tends to decrease.

The linear regression method consists of precisely identifying a line that is capable...

Multiple linear regression concepts

So far, we have resolved simple linear regression problems that study the relation between a dependent variable, y, and an independent variable, x, based on the following regression equation:

In this equation, the explanatory variable is represented by x and the response variable is represented by y. To solve this problem, the least squares method was used. In this method, we can find the best fit by minimizing the sum of squares of the vertical distances from each data point on the line. As mentioned previously, we don't find that a variable depends solely on another very often. Usually, we find that the response variable depends on at least two predictors. In practice, we will have to create models with a response variable that depend on more than one predictor. These models are...

Neural networks for regression using Keras

The real estate market is a market where the sales and purchase between sellers and buyers refer to the exchange of real estate of any kind, such as housing, land, commercial premises, and so on. Real estate prices depend on a series of factors that make the asset more palatable for potential buyers.

These factors include the socioeconomic conditions, environmental conditions, and educational facilities of the area in which the property is located. Analyzing how these factors affect the cost of real estate can be a valuable tool for technicians in the sector in order to predict the market trends, depending on the changes that are occurring.

To do this, we will run a neural network regression for the Boston dataset; the median values of owner-occupied homes are predicted for the test data. The dataset describes 13 numerical properties...

Summary

In this chapter, you've learned about the different types of regression techniques. Regression analysis is a statistical process that's done to study the relationship between a set of independent variables (explanatory variables) and a dependent variable (response variable). Regression algorithms show you how the value of the response variable changes when the explanatory variable is varied. The concepts underlying regression were explored. Furthermore, we gained an understanding of the differences between simple and multiple regression. Later, we saw how a simple and multiple linear regression problem is represented algebraically. Thus, we have analyzed how a regression problem is solved through the least squares algorithm.

The second part of this chapter was dedicated to the practical resolution of a multiple regression problem using the keras library. Modeling...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Experimental projects showcasing the implementation of high-performance deep learning models with Keras.
  • Use-cases across reinforcement learning, natural language processing, GANs and computer vision.
  • Build strong fundamentals of Keras in the area of deep learning and artificial intelligence.

Description

Keras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas. To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more. By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems.

Who is this book for?

If you are a data scientist, machine learning engineer, deep learning practitioner or an AI engineer who wants to build speedy intelligent applications with minimal lines of codes, then this book is the best fit for you. Sound knowledge of machine learning and basic familiarity with Keras library would be useful.

What you will learn

  • Apply regression methods to your data and understand how the regression algorithm works
  • Understand the basic concepts of classification methods and how to implement them in the Keras environment
  • Import and organize data for neural network classification analysis
  • Learn about the role of rectified linear units in the Keras network architecture
  • Implement a recurrent neural network to classify the sentiment of sentences from movie reviews
  • Set the embedding layer and the tensor sizes of a network

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 31, 2018
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781789534160
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Dec 31, 2018
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781789534160
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 119.97
Keras 2.x Projects
€36.99
Advanced Deep Learning with Keras
€32.99
Hands-On Machine Learning for Algorithmic Trading
€49.99
Total 119.97 Stars icon
Banner background image

Table of Contents

12 Chapters
Getting Started with Keras Chevron down icon Chevron up icon
Modeling Real Estate Using Regression Analysis Chevron down icon Chevron up icon
Heart Disease Classification with Neural Networks Chevron down icon Chevron up icon
Concrete Quality Prediction Using Deep Neural Networks Chevron down icon Chevron up icon
Fashion Article Recognition Using Convolutional Neural Networks Chevron down icon Chevron up icon
Movie Reviews Sentiment Analysis Using Recurrent Neural Networks Chevron down icon Chevron up icon
Stock Volatility Forecasting Using Long Short-Term Memory Chevron down icon Chevron up icon
Reconstruction of Handwritten Digit Images Using Autoencoders Chevron down icon Chevron up icon
Robot Control System Using Deep Reinforcement Learning Chevron down icon Chevron up icon
Reuters Newswire Topics Classifier in Keras Chevron down icon Chevron up icon
What is Next? Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
(2 Ratings)
5 star 50%
4 star 0%
3 star 0%
2 star 0%
1 star 50%
Nick Nikolov Mar 19, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I want to emphasize first that this is not a book for understanding the concepts deeply. You shouldn't just show up to a data science position and say, "All I know about LSTM layers in recurrent networks is that they have memory like traditional RNN's but they also have gates."However, if you have a mathematical resource that explains the algorithms and model framework, then you will benefit greatly from this book. It's incredibly good at explaining what it is you are doing for each project.
Amazon Verified review Amazon
y. b. Apr 19, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
This book attracts by some interesting examples. But it is poorly written. Conceptual part has no depth and often is unrelated to the project, really. Code is buggy and does not show that the author even understand what he is doing in the code. For example, in thefashion-mnist project input shape is screwed up and the chapter shows results of 1000 epochs with this network; in chapter on RNN network uses metric 'acc' for prediction of real-valued label.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.