Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Julia High Performance

You're reading from   Julia High Performance Optimizations, distributed computing, multithreading, and GPU programming with Julia 1.0 and beyond

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher Packt
ISBN-13 9781788298117
Length 218 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Avik Sengupta Avik Sengupta
Author Profile Icon Avik Sengupta
Avik Sengupta
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Julia is Fast FREE CHAPTER 2. Analyzing Performance 3. Types, Type Inference, and Stability 4. Making Fast Function Calls 5. Fast Numbers 6. Using Arrays 7. Accelerating Code with the GPU 8. Concurrent Programming with Tasks 9. Threads 10. Distributed Computing with Julia 11. Licences
12. Other Books You May Enjoy

Deep learning on the GPU

The spread of deep learning methodologies has coincided with the popularity of the GPU in computing. These methods are very amenable to parallelization. Indeed, a lot of deep learning methods would not be feasible without GPUs. 

Running deep learning models on the GPU requires the installation of the CuDNN library from NVIDIA. This library contains fast implementations of the low-level mathematical primitives needed for deep learning systems. You'll need to register with the NVIDIA Developer Network and then download the library from https://developer.nvidia.com/cudnn. Choose the version for your operating system and install it on your machine. You'll need to have installed the appropriate graphics drivers and the CUDA toolkit prior to installing CuDNN. 

These primitives are now ready to be used from a higher-level library. To...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image