Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Julia 1.0 Programming Cookbook

You're reading from   Julia 1.0 Programming Cookbook Over 100 numerical and distributed computing recipes for your daily data science work?ow

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781788998369
Length 460 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Przemysław Szufel Przemysław Szufel
Author Profile Icon Przemysław Szufel
Przemysław Szufel
Bogumił Kamiński Bogumił Kamiński
Author Profile Icon Bogumił Kamiński
Bogumił Kamiński
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Installing and Setting Up Julia FREE CHAPTER 2. Data Structures and Algorithms 3. Data Engineering in Julia 4. Numerical Computing with Julia 5. Variables, Types, and Functions 6. Metaprogramming and Advanced Typing 7. Handling Analytical Data 8. Julia Workflow 9. Data Science 10. Distributed Computing 11. Other Books You May Enjoy

Generating full factorial designs


Often in scientific computing, we are interested in generating a full factorial design of a computational experiment (see, for example, http://www.socialresearchmethods.net/kb/expfact.php or https://en.wikipedia.org/wiki/Factorial_experiment). A typical application of this design is performing a grid search in hyperparameter tuning of machine learning models (see https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview or https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search).

Assume that we are given a list of vectors and we want to generate all possible combinations of values taken from those vectors. For instance, if we have the x=[1,2] and y=['a', 'b']vectors, we have four possible combinations of values taken from them, namely, (1,'a'), (2, 'a'), (1,'b'), and (2,'b'). In general, if we have 

vectors, and vector 

has 

elements, then there are

 such combinations. In this recipe, we will show how to use the matrix...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image