Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Haskell Data Analysis cookbook
Haskell Data Analysis cookbook

Haskell Data Analysis cookbook: Explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes

eBook
€8.99 €36.99
Paperback
€45.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Haskell Data Analysis cookbook

Chapter 2. Integrity and Inspection

This chapter will cover the following recipes:

  • Trimming excess whitespace
  • Ignoring punctuation and specific characters
  • Coping with unexpected or missing input
  • Validating records by matching regular expressions
  • Lexing and parsing an e-mail address
  • Deduplication of nonconflicting data items
  • Deduplication of conflicting data items
  • Implementing a frequency table using Data.List
  • Implementing a frequency table using Data.MultiSet
  • Computing the Manhattan distance
  • Computing the Euclidean distance
  • Comparing scaled data using the Pearson correlation coefficient
  • Comparing sparse data using cosine similarity

Introduction

Introduction

The conclusions drawn from data analysis are only as robust as the quality of the data itself. After obtaining raw text, the next natural step is to validate and clean it carefully. Even the slightest bias may risk the integrity of the results. Therefore, we must take great precautionary measures, which involve thorough inspection, to ensure sanity checks are performed on our data before we begin to understand it. This section should be the starting point for cleaning data in Haskell.

Real-world data often has an impurity that needs to be addressed before it can be processed. For example, extraneous whitespaces or punctuation could clutter data, making it difficult to parse. Duplication and data conflicts are another area of unintended consequences of reading real-world data. Sometimes it's just reassuring to know that data makes sense by conducting sanity checks. Some examples of sanity checks include matching regular expressions as well as detecting outliers by establishing...

Trimming excess whitespace

The text obtained from sources may unintentionally include beginning or trailing whitespace characters. When parsing such an input, it is often wise to trim the text. For example, when Haskell source code contains trailing whitespace, the GHC compiler ignores it through a process called lexing. The lexer produces a sequence of tokens, effectively ignoring meaningless characters such as excess whitespace.

In this recipe, we will use built-in libraries to make our own trim function.

How to do it...

Create a new file, which we will call Main.hs, and perform the following steps:

  1. Import the isSpace :: Char -> Bool function from the built-in Data.Char package:
    import Data.Char (isSpace)
  2. Write a trim function that removes the beginning and trailing whitespace:
    trim :: String -> String
    trim = f . f
      where f = reverse . dropWhile isSpace
  3. Test it out within main:
    main :: IO ()
    main = putStrLn $ trim " wahoowa! "
  4. Running the code will result in the following trimmed...

Ignoring punctuation and specific characters

Usually in natural language processing, some uninformative words or characters, called stop words, can be filtered out for easier handling. When computing word frequencies or extracting sentiment data from a corpus, punctuation or special characters might need to be ignored. This recipe demonstrates how to remove these specific characters from the body of a text.

How to do it...

There are no imports necessary. Create a new file, which we will call Main.hs, and perform the following steps:

  1. Implement main and define a string called quote. The back slashes (\) represent multiline strings:
    main :: IO ()
    main = do
      let quote = "Deep Blue plays very good chess-so what?\ 
        \Does that tell you something about how we play chess?\
        \No. Does it tell you about how Kasparov envisions,\ 
        \understands a chessboard? (Douglas Hofstadter)"
      putStrLn $ (removePunctuation.replaceSpecialSymbols) quote
  2. Replace all punctuation marks with an empty...

Coping with unexpected or missing input

Data sources often contain incomplete and unexpected data. One common approach to parsing such data in Haskell is using the Maybe data type.

Imagine designing a function to find the nth element in a list of characters. A naïve implementation may have the type Int -> [Char] -> Char. However, if the function is trying to access an index out of bounds, we should try to indicate that an error has occurred.

A common way to deal with these errors is by encapsulating the output Char into a Maybe context. Having the type Int -> [Char] -> Maybe Char allows for some better error handling. The constructors for Maybe are Just a or Nothing, which will become apparent by running GHCi and testing out the following commands:

$ ghci

Prelude> :type Just 'c'
Just 'c' :: Maybe Char

Prelude> :type Nothing
Nothing :: Maybe a

We will set each field as a Maybe data type so that whenever a field cannot be parsed, it will simply be...

Validating records by matching regular expressions

A regular expression is a language for matching patterns in a string. Our Haskell code can process a regular expression to examine a text and tell us whether or not it matches the rules described by the expression. Regular expression matching can be used to validate or identify a pattern in the text.

In this recipe, we will read a corpus of English text to find possible candidates of full names in a sea of words. Full names usually consist of two words that start with a capital letter. We use this heuristic to extract all the names from an article.

Getting ready

Create an input.txt file with some text. In this example, we use a snippet from a New York Times article on dinosaurs (http://www.nytimes.com/2013/12/17/science/earth/outsider-challenges-papers-on-growth-of-dinosaurs.html)

Other co-authors of Dr. Erickson's include Mark Norell, chairman of paleontology at the American Museum of Natural History; Philip Currie, a professor of dinosaur...

Introduction


The conclusions drawn from data analysis are only as robust as the quality of the data itself. After obtaining raw text, the next natural step is to validate and clean it carefully. Even the slightest bias may risk the integrity of the results. Therefore, we must take great precautionary measures, which involve thorough inspection, to ensure sanity checks are performed on our data before we begin to understand it. This section should be the starting point for cleaning data in Haskell.

Real-world data often has an impurity that needs to be addressed before it can be processed. For example, extraneous whitespaces or punctuation could clutter data, making it difficult to parse. Duplication and data conflicts are another area of unintended consequences of reading real-world data. Sometimes it's just reassuring to know that data makes sense by conducting sanity checks. Some examples of sanity checks include matching regular expressions as well as detecting outliers by establishing...

Trimming excess whitespace


The text obtained from sources may unintentionally include beginning or trailing whitespace characters. When parsing such an input, it is often wise to trim the text. For example, when Haskell source code contains trailing whitespace, the GHC compiler ignores it through a process called lexing. The lexer produces a sequence of tokens, effectively ignoring meaningless characters such as excess whitespace.

In this recipe, we will use built-in libraries to make our own trim function.

How to do it...

Create a new file, which we will call Main.hs, and perform the following steps:

  1. Import the isSpace :: Char -> Bool function from the built-in Data.Char package:

    import Data.Char (isSpace)
  2. Write a trim function that removes the beginning and trailing whitespace:

    trim :: String -> String
    trim = f . f
      where f = reverse . dropWhile isSpace
  3. Test it out within main:

    main :: IO ()
    main = putStrLn $ trim " wahoowa! "
  4. Running the code will result in the following trimmed string:

    ...

Ignoring punctuation and specific characters


Usually in natural language processing, some uninformative words or characters, called stop words, can be filtered out for easier handling. When computing word frequencies or extracting sentiment data from a corpus, punctuation or special characters might need to be ignored. This recipe demonstrates how to remove these specific characters from the body of a text.

How to do it...

There are no imports necessary. Create a new file, which we will call Main.hs, and perform the following steps:

  1. Implement main and define a string called quote. The back slashes (\) represent multiline strings:

    main :: IO ()
    main = do
      let quote = "Deep Blue plays very good chess-so what?\ 
        \Does that tell you something about how we play chess?\
        \No. Does it tell you about how Kasparov envisions,\ 
        \understands a chessboard? (Douglas Hofstadter)"
      putStrLn $ (removePunctuation.replaceSpecialSymbols) quote
  2. Replace all punctuation marks with an empty string, and...

Coping with unexpected or missing input


Data sources often contain incomplete and unexpected data. One common approach to parsing such data in Haskell is using the Maybe data type.

Imagine designing a function to find the nth element in a list of characters. A naïve implementation may have the type Int -> [Char] -> Char. However, if the function is trying to access an index out of bounds, we should try to indicate that an error has occurred.

A common way to deal with these errors is by encapsulating the output Char into a Maybe context. Having the type Int -> [Char] -> Maybe Char allows for some better error handling. The constructors for Maybe are Just a or Nothing, which will become apparent by running GHCi and testing out the following commands:

$ ghci

Prelude> :type Just 'c'
Just 'c' :: Maybe Char

Prelude> :type Nothing
Nothing :: Maybe a

We will set each field as a Maybe data type so that whenever a field cannot be parsed, it will simply be represented as Nothing....

Validating records by matching regular expressions


A regular expression is a language for matching patterns in a string. Our Haskell code can process a regular expression to examine a text and tell us whether or not it matches the rules described by the expression. Regular expression matching can be used to validate or identify a pattern in the text.

In this recipe, we will read a corpus of English text to find possible candidates of full names in a sea of words. Full names usually consist of two words that start with a capital letter. We use this heuristic to extract all the names from an article.

Getting ready

Create an input.txt file with some text. In this example, we use a snippet from a New York Times article on dinosaurs (http://www.nytimes.com/2013/12/17/science/earth/outsider-challenges-papers-on-growth-of-dinosaurs.html)

Other co-authors of Dr. Erickson's include Mark Norell, chairman of paleontology at the American Museum of Natural History; Philip Currie, a professor of dinosaur...

Lexing and parsing an e-mail address


An elegant way to clean data is by defining a lexer to split up a string into tokens. In this recipe, we will parse an e-mail address using the attoparsec library. This will naturally allow us to ignore the surrounding whitespace.

Getting ready

Import the attoparsec parser combinator library:

$ cabal install attoparsec

How to do it…

Create a new file, which we will call Main.hs, and perform the following steps:

  1. Use the GHC OverloadedStrings language extension to more legibly use the Text data type throughout the code. Also, import the other relevant libraries:

    {-# LANGUAGE OverloadedStrings #-}
    import Data.Attoparsec.Text
    import Data.Char (isSpace, isAlphaNum)
  2. Declare a data type for an e-mail address:

    data E-mail = E-mail 
      { user :: String
      , host :: String
      } deriving Show
  3. Define how to parse an e-mail address. This function can be as simple or as complicated as required:

    e-mail :: Parser E-mail
    e-mail = do
      skipSpace
      user <- many' $ satisfy isAlphaNum...

Deduplication of nonconflicting data items


Duplication is a common problem when collecting large amounts of data. In this recipe, we will combine similar records in a way that ensures no information is lost.

Getting ready

Create an input.csv file with repeated data:

How to do it...

Create a new file, which we will call Main.hs, and perform the following steps:

  1. We will be using the CSV, Map, and Maybe packages:

    import Text.CSV (parseCSV, Record)
    import Data.Map (fromListWith)
    import Control.Applicative ((<|>))
  2. Define the Item data type corresponding to the CSV input:

    data Item = Item   { name :: String
                       , color :: Maybe String
                       , cost :: Maybe Float
                       } deriving Show
  3. Get each record from CSV and put them in a map by calling our doWork function:

    main :: IO ()
    main = do
      let fileName = "input.csv"
      input <- readFile fileName
      let csv = parseCSV fileName input
      either handleError doWork csv
  4. If we're unable to parse CSV, print an error message...

Deduplication of conflicting data items


Unfortunately, information about an item may be inconsistent throughout the corpus. Collision strategies are often domain-dependent, but one common way to manage this conflict is by simply storing all variations of the data. In this recipe, we will read a CSV file that contains information about musical artists and store all of the information about their songs and genres in a set.

Getting ready

Create a CSV input file with the following musical artists. The first column is for the name of the artist or band. The second column is the song name, and the third is the genre. Notice how some musicians have multiple songs or genres.

How to do it...

Create a new file, which we will call Main.hs, and perform the following steps:

  1. We will be using the CSV, Map, and Set packages:

    import Text.CSV (parseCSV, Record)
    import Data.Map (fromListWith)
    import qualified Data.Set as S
  2. Define the Artist data type corresponding to the CSV input. For fields that may contain conflicting...

Implementing a frequency table using Data.List


A frequency map of values is often useful to detect outliers. We can use it to identify frequencies that seem out of the ordinary. In this recipe, we will be counting the number of different colors in a list.

How to do it...

Create a new file, which we will call Main.hs, and perform the following steps:

  1. We will use the group and sort functions from Data.List:

    import Data.List (group, sort)
  2. Define a simple data type for colors:

    data Color = Red | Green | Blue deriving (Show, Ord, Eq)
  3. Create a list of these colors:

    main :: IO ()
    main = do
      let items = [Red, Green, Green, Blue, Red, Green, Green]
  4. Implement the frequency map and print it out:

      let freq = 
         map (\x -> (head x, length x)) . group . sort $ items
      print freq

How it works...

Grouping identical items after sorting the list is the central idea.

See the following step-by-step evaluation in ghci:

Prelude> sort items

[Red,Red,Green,Green,Green,Green,Blue]
Prelude> group it

[[Red,Red...
Left arrow icon Right arrow icon

Description

Step-by-step recipes filled with practical code samples and engaging examples demonstrate Haskell in practice, and then the concepts behind the code. This book shows functional developers and analysts how to leverage their existing knowledge of Haskell specifically for high-quality data analysis. A good understanding of data sets and functional programming is assumed.

What you will learn

  • Obtain and analyze raw data from various sources including text files, CSV files, databases, and websites
  • Implement practical tree and graph algorithms on various datasets
  • Apply statistical methods such as moving average and linear regression to understand patterns
  • Fiddle with parallel and concurrent code to speed up and simplify timeconsuming algorithms
  • Find clusters in data using some of the most popular machine learning algorithms
  • Manage results by visualizing or exporting data
Estimated delivery fee Deliver to Cyprus

Premium delivery 7 - 10 business days

€32.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 25, 2014
Length: 334 pages
Edition : 1st
Language : English
ISBN-13 : 9781783286331
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Cyprus

Premium delivery 7 - 10 business days

€32.95
(Includes tracking information)

Product Details

Publication date : Jun 25, 2014
Length: 334 pages
Edition : 1st
Language : English
ISBN-13 : 9781783286331
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 75.98
Haskell Data Analysis cookbook
€45.99
Haskell Design Patterns
€29.99
Total 75.98 Stars icon
Banner background image

Table of Contents

13 Chapters
1. The Hunt for Data Chevron down icon Chevron up icon
2. Integrity and Inspection Chevron down icon Chevron up icon
3. The Science of Words Chevron down icon Chevron up icon
4. Data Hashing Chevron down icon Chevron up icon
5. The Dance with Trees Chevron down icon Chevron up icon
6. Graph Fundamentals Chevron down icon Chevron up icon
7. Statistics and Analysis Chevron down icon Chevron up icon
8. Clustering and Classification Chevron down icon Chevron up icon
9. Parallel and Concurrent Design Chevron down icon Chevron up icon
10. Real-time Data Chevron down icon Chevron up icon
11. Visualizing Data Chevron down icon Chevron up icon
12. Exporting and Presenting Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.7
(6 Ratings)
5 star 50%
4 star 0%
3 star 33.3%
2 star 0%
1 star 16.7%
Filter icon Filter
Top Reviews

Filter reviews by




Nelson Solano Nov 09, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Was intimidated by all the content within this book, but turns out it's very approachable! Lots of examples and different ways of explaining concepts. I'm already beginning to feel like I have a stronger grasp with Haskell, especially in the context to data science and statistics. I recommend this book to anyone who wants an intro to data analysis techniques for real-world use.
Amazon Verified review Amazon
Student May 12, 2015
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book enumerates through dozens of important algorithms used in typical data analysis tasks. It’s one of the most practical and hands-on books on this subject for the Haskell programming language. The examples tie together nicely. I can easily copy and paste the code to test each algorithm. The author also provides the code for each recipe on GitHub.I would recommend this to anyone who has touched Haskell and is willing to explore more interesting applications.
Amazon Verified review Amazon
David Jameson Jul 05, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great idea, I have been looking for a cookbook like this for some time and I have been slowly working through the examples. The Haskell world needs books like this really badly as most documentation that you find focuses more on defining the functions rather than helping you use them.There are some typos here and there such that the compiler produces errors that are hard to understand if you're not already pretty good with Haskell. That had spoiled it a bit for me at first.However, the great news is that up to date source code is available on github and so as long as you get code from there rather than just copying from the book directly, you should be fine.
Amazon Verified review Amazon
garrison jensen Apr 03, 2015
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
I thought this book would explain algorithms. It doesn't. It simply points to numerous libraries that already implement them.I like it, I will use it as a reference for libraries. But if you are expecting to find advice on implementing algorithms yourself, this is not the book for you.
Amazon Verified review Amazon
Jake McCrary Sep 01, 2014
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Packt Publishing recently asked me to write a review of the book Haskell Data Analysis Cookbook by Nishant Shukla. The book is broken into small sections that show you how to do a particular task related to data analysis. These tasks vary from reading a csv file or parsing json to listening to a stream of tweets.I’m not a Haskell programmer. My Haskell experience is limited to reading some books (Learn You a Haskell for Great Good and most of Real World Haskell) and solving some toy problems. All of reading and programming happened years ago though so I’m out of practice.This book is not for a programmer that is unfamiliar with Haskell. If you’ve never studied it before you’ll find yourself turning towards documentation. If you enter this book with a solid understanding of functional programming you can get by with a smaller understanding of Haskell but you will not get much from the book.I’ve only read a few cookbook style books and this one followed the usual format. It will be more useful as a quick reference than as something you would read through. It doesn’t dive deep into any topic but does point you toward libraries for various tasks and shows a short example of using them.A common critic I have of most code examples applies to this book. Most examples do not do qualified imports of namespaces or selective imports of functions from namespaces. This is especially useful when your examples might be read by people who are not be familiar with the languages standard libraries. Reading code and immediately knowing where a function comes from is incredibly useful to understanding.The code for this book is available on GitHub. It is useful to look at the full example for a section. The examples in the book are broken into parts with English explanations and I found that made it hard to fully understand how the code fit together. Looking at the examples in the GitHub repo helped.RecommendationI’d recommend this book for Haskell programmers who find the table of contents interesting. If you read the table of contents and think it would be useful to have a shallow introduction to the topics listed then you’ll find this book useful. It doesn’t give a detailed dive into anything but at least gives you a starting point.If you either learning Haskell or using Haskell then this book doesn’t have much to offer you.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela