Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On One-shot Learning with Python

You're reading from   Hands-On One-shot Learning with Python Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838825461
Length 156 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ankush Garg Ankush Garg
Author Profile Icon Ankush Garg
Ankush Garg
Shruti Jadon Shruti Jadon
Author Profile Icon Shruti Jadon
Shruti Jadon
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: One-shot Learning Introduction
2. Introduction to One-shot Learning FREE CHAPTER 3. Section 2: Deep Learning Architectures
4. Metrics-Based Methods 5. Model-Based Methods 6. Optimization-Based Methods 7. Section 3: Other Methods and Conclusion
8. Generative Modeling-Based Methods 9. Conclusions and Other Approaches 10. Other Books You May Enjoy

Overview of gradient descent

If we look into the learning method of neural network architectures, it usually consists of a lot of parameters and is optimized using a gradient-descent algorithm, which takes many iterative steps over many examples to perform well. The gradient descent algorithm, however, provides a decent performance in its models, but there are scenarios where the gradient-descent optimization algorithm fails. Let's look at such scenarios in the coming sections.

There are mainly two reasons why the gradient-descent algorithm fails to optimize a neural network when a limited amount of data is given:

  • For each new task, the neural network has to start from a random initialization of its parameters, which results in late convergence. Transfer learning has been used to alleviate this problem by using a pretrained network, but it is constrained in that the data...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime