Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
A. Bibliography Index

Core concepts of survival analysis

Survival analysis deals with censored data, and it is very common that parametric models are unsuitable for explaining the lifetimes observed in clinical trials.

Let T denote the survival time, or the time to the event of interest, and we will naturally have Core concepts of survival analysis, which is a continuous random variable. Suppose that the lifetime cumulative distribution is F and the associated density function is f. We define important concepts as required for further analysis. We will explore the concept of survival function next.

Suppose that T is the continuous random variable of a lifetime and that the associated cumulative distribution function is F. The survival function at time t is the probability the observation is still alive at the time, and it is defined by the following:

Core concepts of survival analysis

The survival function can take different forms. Let's go through some examples for each of the distributions to get a clearer picture of the difference in survival functions.

Exponential Distribution...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime