The last chapter introduced you to the world of machine learning (ML). In this chapter, we will develop the ML foundations that are required for building and using Automated ML (AutoML) platforms. It is not always clear how ML is best applied or what it takes to implement it. However, ML tools are getting more straightforward to use, and AutoML platforms are making it more accessible to a broader audience. In the future there will undoubtedly be a higher collaboration between man and machine.
The future of ML may require people to prepare data for its consumption and identify use cases for implementation. More importantly, people are needed to interpret the results and audit the ML system—whether they are following the right and best approaches to solving a problem. The future looks pretty amazing, but we need to build that...