Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning for Genomics

You're reading from   Deep Learning for Genomics Data-driven approaches for genomics applications in life sciences and biotechnology

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804615447
Length 270 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Upendra Kumar Devisetty Upendra Kumar Devisetty
Author Profile Icon Upendra Kumar Devisetty
Upendra Kumar Devisetty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Machine Learning in Genomics
2. Chapter 1: Introducing Machine Learning for Genomics FREE CHAPTER 3. Chapter 2: Genomics Data Analysis 4. Chapter 3: Machine Learning Methods for Genomic Applications 5. Part 2 – Deep Learning for Genomic Applications
6. Chapter 4: Deep Learning for Genomics 7. Chapter 5: Introducing Convolutional Neural Networks for Genomics 8. Chapter 6: Recurrent Neural Networks in Genomics 9. Chapter 7: Unsupervised Deep Learning with Autoencoders 10. Chapter 8: GANs for Improving Models in Genomics 11. Part 3 – Operationalizing models
12. Chapter 9: Building and Tuning Deep Learning Models 13. Chapter 10: Model Interpretability in Genomics 14. Chapter 11: Model Deployment and Monitoring 15. Chapter 12: Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics 16. Index 17. Other Books You May Enjoy

Preface

Deep learning is the subset of machine learning based on artificial neural networks with representative learning using vast amounts of data. Machine learning is a subcomponent of artificial intelligence, which includes sophisticated algorithms that enable machines to mimic human intelligence to perform human tasks automatically. Both deep learning and machine learning help automatically detect meaningful patterns from data without explicit programming. Machine learning and deep learning have completely changed the way that we live these days. We rely on these so much that it’s hard to imagine a day without using any of these in some way or another, whether it is via the spam filtering of emails, product recommendations, or speech recognition. Both machine learning and specifically deep learning have been adopted by the scientific community in areas such as biology, genomics, bioinformatics, and computational biology. High-throughput technologies (HTS) such as next-generation sequencing (NGS) have made a significant contribution to genomics to study complex biological phenomena at a single-base-pair resolution on an unprecedented scale, facilitating an era of big data genomics. To get meaningful and novel biological insights from this big data, most of the algorithms are currently based on machine learning and, lately, deep learning methodologies to provide higher levels of accuracy in specific tasks related to genomics than state-of-the-art rule-based algorithms. Given the growing trend in the perception and application of machine learning and deep learning in genomics, research professionals, scientists, and managers require a good understanding of this exciting field to equip them with the necessary tools, technologies, and general guidelines to assist them in the selection of machine learning and deep learning methods for handling genomics data and accelerating data-driven decision-making in industries related to life sciences and biotechnology.

Throughout this book, we will learn how to apply deep learning approaches to solve real-world problems in genomics, interpret biological insights from deep learning models built from genomic datasets, and finally, operationalize deep learning models using open source tools to enable predictions for end users.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image