Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Marketing Analytics

You're reading from   Data Science for Marketing Analytics A practical guide to forming a killer marketing strategy through data analysis with Python

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781800560475
Length 636 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Vishwesh Ravi Shrimali Vishwesh Ravi Shrimali
Author Profile Icon Vishwesh Ravi Shrimali
Vishwesh Ravi Shrimali
Mirza Rahim Baig Mirza Rahim Baig
Author Profile Icon Mirza Rahim Baig
Mirza Rahim Baig
Gururajan Govindan Gururajan Govindan
Author Profile Icon Gururajan Govindan
Gururajan Govindan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Data Preparation and Cleaning 2. Data Exploration and Visualization FREE CHAPTER 3. Unsupervised Learning and Customer Segmentation 4. Evaluating and Choosing the Best Segmentation Approach 5. Predicting Customer Revenue Using Linear Regression 6. More Tools and Techniques for Evaluating Regression Models 7. Supervised Learning: Predicting Customer Churn 8. Fine-Tuning Classification Algorithms 9. Multiclass Classification Algorithms Appendix

Model Evaluation

When you train your model, you usually split the data into training and testing datasets. This is to ensure that the model doesn't overfit. Overfitting refers to a phenomenon where a model performs very well on the training data but fails to give good results on testing data, or in other words, the model fails to generalize.

In scikit-learn, you have a function known as train_test_split that splits the data into training and testing sets randomly.

When evaluating your model, you start by changing the parameters to improve the accuracy as per your test data. There is a high chance of leaking some of the information from the testing set into your training set if you optimize your parameters using only the testing set data. To avoid this, you can split data into three parts—training, testing, and validation sets. However, the disadvantage of this technique is that you will be further reducing your training dataset.

The solution is to use cross-validation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image