Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with Python

You're reading from   Data Analysis with Python A Modern Approach

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789950069
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Taieb David Taieb
Author Profile Icon David Taieb
David Taieb
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Programming and Data Science – A New Toolset FREE CHAPTER 2. Python and Jupyter Notebooks to Power your Data Analysis 3. Accelerate your Data Analysis with Python Libraries 4. Publish your Data Analysis to the Web - the PixieApp Tool 5. Python and PixieDust Best Practices and Advanced Concepts 6. Analytics Study: AI and Image Recognition with TensorFlow 7. Analytics Study: NLP and Big Data with Twitter Sentiment Analysis 8. Analytics Study: Prediction - Financial Time Series Analysis and Forecasting 9. Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis 10. The Future of Data Analysis and Where to Develop your Skills A. PixieApp Quick-Reference Other Books You May Enjoy Index

Is data science here to stay?

Let's get straight to the point from the start: I strongly think that the answer is yes.

However, that was not always the case. A few years back, when I first started hearing about data science as a concept, I initially thought that it was yet another marketing buzzword to describe an activity that already existed in the industry: Business Intelligence (BI). As a developer and architect working mostly on solving complex system integration problems, it was easy to convince myself that I didn't need to get directly involved in data science projects, even though it was obvious that their numbers were on the rise, the reason being that developers traditionally deal with data pipelines as black boxes that are accessible with well-defined APIs. However, in the last decade, we've seen exponential growth in data science interest both in academia and in the industry, to the point it became clear that this model would not be sustainable.

As data analytics are playing a bigger and bigger role in a company's operational processes, the developer's role was expanded to get closer to the algorithms and build the infrastructure that would run them in production. Another piece of evidence that data science has become the new gold rush is the extraordinary growth of data scientist jobs, which have been ranked number one for 2 years in a row on Glassdoor (https://www.prnewswire.com/news-releases/glassdoor-reveals-the-50-best-jobs-in-america-for-2017-300395188.html) and are consistently posted the most by employers on Indeed. Headhunters are also on the prowl on LinkedIn and other social media platforms, sending tons of recruiting messages to whoever has a profile showing any data science skills.

One of the main reasons behind all the investment being made into these new technologies is the hope that it will yield major improvements and greater efficiencies in the business. However, even though it is a growing field, data science in the enterprise today is still confined to experimentation instead of being a core activity as one would expect given all the hype. This has lead a lot of people to wonder if data science is a passing fad that will eventually subside and yet another technology bubble that will eventually pop, leaving a lot of people behind.

These are all good points, but I quickly realized that it was more than just a passing fad; more and more of the projects I was leading included the integration of data analytics into the core product features. Finally, it is when the IBM Watson Question Answering system won at a game of Jeopardy! against two experienced champions, that I became convinced that data science, along with the cloud, big data, and Artificial Intelligence (AI), was here to stay and would eventually change the way we think about computer science.

You have been reading a chapter from
Data Analysis with Python
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781789950069
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image