Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Cracking the Data Science Interview

You're reading from   Cracking the Data Science Interview Unlock insider tips from industry experts to master the data science field

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781805120506
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Leondra R. Gonzalez Leondra R. Gonzalez
Author Profile Icon Leondra R. Gonzalez
Leondra R. Gonzalez
Aaren Stubberfield Aaren Stubberfield
Author Profile Icon Aaren Stubberfield
Aaren Stubberfield
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Breaking into the Data Science Field FREE CHAPTER
2. Chapter 1: Exploring Today’s Modern Data Science Landscape 3. Chapter 2: Finding a Job in Data Science 4. Part 2: Manipulating and Managing Data
5. Chapter 3: Programming with Python 6. Chapter 4: Visualizing Data and Data Storytelling 7. Chapter 5: Querying Databases with SQL 8. Chapter 6: Scripting with Shell and Bash Commands in Linux 9. Chapter 7: Using Git for Version Control 10. Part 3: Exploring Artificial Intelligence
11. Chapter 8: Mining Data with Probability and Statistics 12. Chapter 9: Understanding Feature Engineering and Preparing Data for Modeling 13. Chapter 10: Mastering Machine Learning Concepts 14. Chapter 11: Building Networks with Deep Learning 15. Chapter 12: Implementing Machine Learning Solutions with MLOps 16. Part 4: Getting the Job
17. Chapter 13: Mastering the Interview Rounds 18. Chapter 14: Negotiating Compensation 19. Index 20. Other Books You May Enjoy

Summary

In this chapter, we dove into the core fundamentals of data mining with statistics, which are often assessed during data science interviews. We reviewed the basics of probability, how to describe data using different measures of centrality and variability, how to estimate variables with population sampling, the relevance of the CLT and the assumption of normality, and reviewed probability distributions and hypothesis testing. By learning about these principles, you will be able to identify and describe relevant data statistics and make testable hypotheses. You will also avoid being fooled by misused statistics that manipulate our understanding of data.

Be aware that some interviewers will ask theoretical questions while others will want you to work out the solution to a problem. In either case, statistics is the backbone of many machine learning algorithms and experimentation designs, which are prominent in data science in all industries.

In the next chapter, we will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image