Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cracking the Data Science Interview

You're reading from   Cracking the Data Science Interview Unlock insider tips from industry experts to master the data science field

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781805120506
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Leondra R. Gonzalez Leondra R. Gonzalez
Author Profile Icon Leondra R. Gonzalez
Leondra R. Gonzalez
Aaren Stubberfield Aaren Stubberfield
Author Profile Icon Aaren Stubberfield
Aaren Stubberfield
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Breaking into the Data Science Field FREE CHAPTER
2. Chapter 1: Exploring Today’s Modern Data Science Landscape 3. Chapter 2: Finding a Job in Data Science 4. Part 2: Manipulating and Managing Data
5. Chapter 3: Programming with Python 6. Chapter 4: Visualizing Data and Data Storytelling 7. Chapter 5: Querying Databases with SQL 8. Chapter 6: Scripting with Shell and Bash Commands in Linux 9. Chapter 7: Using Git for Version Control 10. Part 3: Exploring Artificial Intelligence
11. Chapter 8: Mining Data with Probability and Statistics 12. Chapter 9: Understanding Feature Engineering and Preparing Data for Modeling 13. Chapter 10: Mastering Machine Learning Concepts 14. Chapter 11: Building Networks with Deep Learning 15. Chapter 12: Implementing Machine Learning Solutions with MLOps 16. Part 4: Getting the Job
17. Chapter 13: Mastering the Interview Rounds 18. Chapter 14: Negotiating Compensation 19. Index 20. Other Books You May Enjoy

Learning the basics of data storage

As stated earlier, the data storage step in the model pipeline process tends to be a function of machine learning/data engineers. However, it is beneficial for a data scientist to have a basic understanding of this step.

Data storage is simply about housing the data that we gather from different sources. There are a variety of approaches to this, depending on the data’s requirements (e.g., the structure, schema, size, ingestion type, privacy, etc.).

The following are some examples of data storage options within MLOps:

  • Binary Large Object (BLOB) storage: BLOB storage is a type of data storage that is designed to store and manage large binary data, such as images, videos, documents, and other types of files. BLOBs can be of varying sizes, from small to very large, and they are typically unstructured data, meaning they lack a specific schema or organization. In modern data architectures, the cloud services offered by Azure Blob...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image