Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
C# Data Structures and Algorithms

You're reading from   C# Data Structures and Algorithms Harness the power of C# to build a diverse range of efficient applications

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781803248271
Length 372 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Marcin Jamro Marcin Jamro
Author Profile Icon Marcin Jamro
Marcin Jamro
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Data Types 2. Chapter 2: Introduction to Algorithms FREE CHAPTER 3. Chapter 3: Arrays and Sorting 4. Chapter 4: Variants of Lists 5. Chapter 5: Stacks and Queues 6. Chapter 6: Dictionaries and Sets 7. Chapter 7: Variants of Trees 8. Chapter 8: Exploring Graphs 9. Chapter 9: See in Action 10. Chapter 10: Conclusion 11. Index 12. Other Books You May Enjoy

Heaps

A heap is another variant of a tree, which you already got to know in Chapter 3, Arrays and Sorting. There, you used a heap in the heap sort algorithm for sorting an array. For this reason, in the current chapter, you will see only a brief summary of this data structure. However, I strongly encourage you not to leave this topic and learn much more about heaps on your own, as they are powerful and popular data structures.

As you already know, a binary heap exists in two versions: min-heap and max-heap. For each of them, an additional property must be satisfied:

  • For min-heap: The value of each node must be greater than or equal to the value of its parent node
  • For max-heap: The value of each node must be less than or equal to the value of its parent node

These rules perform a very important role because they dictate that the root node always contains the smallest value (in the min-heap) or the largest value (in the max-heap). You benefited from this assumption...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image