So far, we've been performing supervised learning. There have been labels we wished to predict correctly, and values we wished to approximate closely with a function, and were unable to. Now, we'll look at an entirely different topic, which will be the focus of both this chapter and the next: unsupervised learning, starting with clustering. This chapter starts with a brief discussion on the difference between supervised and unsupervised learning, and specifically, what clustering is. After that, we'll look at our first clustering algorithm: the k-means algorithm, a popular and simple algorithm. Before exploring some other algorithms, we'll discuss approaches to evaluating a clustering scheme. Then, we'll move on to the next two approaches for clustering; the first being hierarchical clustering. The final clustering approach we&apos...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine