Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Python Workshop

You're reading from   The Python Workshop Learn to code in Python and kickstart your career in software development or data science

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781839218859
Length 608 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Andrew Bird Andrew Bird
Author Profile Icon Andrew Bird
Andrew Bird
Graham Lee Graham Lee
Author Profile Icon Graham Lee
Graham Lee
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Dr. Lau Cher Han Dr. Lau Cher Han
Author Profile Icon Dr. Lau Cher Han
Dr. Lau Cher Han
Olivier Pons Olivier Pons
Author Profile Icon Olivier Pons
Olivier Pons
Mario Corchero Jiménez Mario Corchero Jiménez
Author Profile Icon Mario Corchero Jiménez
Mario Corchero Jiménez
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Vital Python – Math, Strings, Conditionals, and Loops FREE CHAPTER 2. Python Structures 3. Executing Python – Programs, Algorithms, and Functions 4. Extending Python, Files, Errors, and Graphs 5. Constructing Python – Classes and Methods 6. The Standard Library 7. Becoming Pythonic 8. Software Development 9. Practical Python – Advanced Topics 10. Data Analytics with pandas and NumPy 11. Machine Learning Appendix

Regularization: Ridge and Lasso

Regularization is an important concept in machine learning; it's used to counteract overfitting. In the world of big data, it's easy to overfit data to the training set. When this happens, the model will often perform badly on the test set as indicated by mean_squared_error, or some other error.

You may wonder why a test set is kept aside at all. Wouldn't the most accurate machine learning model come from fitting the algorithm on all the data?

The answer, generally accepted by the machine learning community after years of research and experimentation, is probably not.

There are two main problems with fitting a machine learning model on all the data:

  • There is no way to test the model on unseen data. Machine learning models are powerful when they make good predictions on new data. Models are trained on known results, but they perform in the real world on data that has never been seen before. It's not vital to see...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image