Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The AI Product Manager's Handbook

You're reading from   The AI Product Manager's Handbook Develop a product that takes advantage of machine learning to solve AI problems

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781804612934
Length 250 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Irene Bratsis Irene Bratsis
Author Profile Icon Irene Bratsis
Irene Bratsis
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – Lay of the Land – Terms, Infrastructure, Types of AI, and Products Done Well
2. Chapter 1: Understanding the Infrastructure and Tools for Building AI Products FREE CHAPTER 3. Chapter 2: Model Development and Maintenance for AI Products 4. Chapter 3: Machine Learning and Deep Learning Deep Dive 5. Chapter 4: Commercializing AI Products 6. Chapter 5: AI Transformation and Its Impact on Product Management 7. Part 2 – Building an AI-Native Product
8. Chapter 6: Understanding the AI-Native Product 9. Chapter 7: Productizing the ML Service 10. Chapter 8: Customization for Verticals, Customers, and Peer Groups 11. Chapter 9: Macro and Micro AI for Your Product 12. Chapter 10: Benchmarking Performance, Growth Hacking, and Cost 13. Part 3 – Integrating AI into Existing Non-AI Products
14. Chapter 11: The Rising Tide of AI 15. Chapter 12: Trends and Insights across Industry 16. Chapter 13: Evolving Products into AI Products 17. Index 18. Other Books You May Enjoy

Summary

We’ve covered a lot in this chapter, but keep in mind that a lot of the concepts present here will be returned to in subsequent chapters for further discussion. It’s almost impossible to overstate the infrastructure AI/ML will need to be successful because so much of the performance is dependent on how we deliver data and how we manage deployments. We covered the basic definitions of ML and DL, as well as the learning types that both can employ. We also covered some of the basics of setting up and maintaining an AI pipeline and included a few examples of how other companies manage this kind of operation.

Building products that leverage AI/ML is an ambitious endeavor, and this first chapter was meant to provide enough of a foundation for the process of setting up an AI program overall, so that we can build on the various aspects of that process in the following chapters without having to introduce too many new concepts so late in the book. If you’re feeling overwhelmed, it only means you’re grasping the scale necessary for building with AI. That’s a great sign! In Chapter 2, we will get into the specifics of using and maintaining the ML models we briefly introduced earlier in this chapter.

You have been reading a chapter from
The AI Product Manager's Handbook
Published in: Feb 2023
Publisher: Packt
ISBN-13: 9781804612934
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image