Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scientific Computing with Python 3

You're reading from   Scientific Computing with Python 3 An example-rich, comprehensive guide for all of your Python computational needs

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781786463517
Length 332 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Jan Erik Solem Jan Erik Solem
Author Profile Icon Jan Erik Solem
Jan Erik Solem
Claus Fuhrer Claus Fuhrer
Author Profile Icon Claus Fuhrer
Claus Fuhrer
Olivier Verdier Olivier Verdier
Author Profile Icon Olivier Verdier
Olivier Verdier
Claus Führer Claus Führer
Author Profile Icon Claus Führer
Claus Führer
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Variables and Basic Types 3. Container Types 4. Linear Algebra – Arrays 5. Advanced Array Concepts 6. Plotting 7. Functions 8. Classes 9. Iterating 10. Error Handling 11. Namespaces, Scopes, and Modules 12. Input and Output 13. Testing 14. Comprehensive Examples 15. Symbolic Computations - SymPy References

Mathematical preliminaries


In order to understand how arrays work in NumPy, it is useful to understand the mathematical parallel between accessing tensor (matrix and vector) elements by indexes and evaluating mathematical functions by providing arguments. We also cover in this section the generalization of the dot product as a reduction operator.

Arrays as functions

Arrays may be considered from several different points of view. We believe that the most fruitful one in order to understand arrays is that of functions of several variables.

For instance, selecting a component of a given vector in n may just be considered a function from the set of ℕn to ℝ, where we define the set:

Here the set ℕn has n elements. The Python function range generates ℕn.

Selecting an element of a given matrix, on the other hand, is a function of two parameters, taking its value in ℝ. Picking a particular element of an m × n matrix may thus be considered a function from ℕm × ℕn to ℝ.

Operations are elementwise

NumPy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image