Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
R Statistics Cookbook
R Statistics Cookbook

R Statistics Cookbook: Over 100 recipes for performing complex statistical operations with R 3.5

eBook
$17.98 $19.99
Paperback
$26.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Redeem a companion digital copy on all Print orders
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

R Statistics Cookbook

Getting Started with R and Statistics

In this chapter, we will cover the following recipes:

  • Maximum likelihood estimation
  • Calculation densities, quantiles, and CDFs
  • Creating barplots using ggplot
  • Generating random numbers from multiple distributions
  • Complex data processing with dplyr
  • 3D visualization with the plot3d package
  • Formatting tabular data with the formattable package
  • Simple random sampling
  • Creating plots via the DiagrammeR package
  • C++ in R via the Rcpp package
  • Interactive plots with the ggplot GUI package
  • Animations with the gganimate package
  • Using R6 classes
  • Modelling sequences with the TraMineR package
  • Clustering sequences with the TraMineR package
  • Displaying geographical data with the leaflet package

Introduction

In this chapter, we will introduce a wide array of topics regarding statistics and data analysis in R. We will use quite a diverse set of packages, most of which have been released over recent years.

We'll start by generating random numbers, fitting distributions to data, and using several packages to plot data. We will then move onto sampling, creating diagrams with the DiagrammeR package, and analyzing sequence data with the TraMineR package. We also present several techniques, not strictly related to statistics, but important for dealing with advanced methods in R—we introduce the Rcpp package (used for embedding highly efficient C++ code into your R scripts) and the R6 package (used for operating with R6 classes, allowing you to code using an object-oriented approach in R).

Technical requirements

We will use R and its packages, that can be installed via the install.packages() command, and we will indicate which ones are necessary for each recipe in the corresponding Getting ready section.

Maximum likelihood estimation

Suppose we observe a hundred roulette spins, and we get red 30 times and black 70 times. We can start by assuming that the probability of getting red is 0.5 (and black is obviously 0.5). This is certainly not a very good idea, because if that was the case, we should have seen nearly red 50 times and black 50 times, but we did not. It is thus evident that a more reasonable assumption would have been a probability of 0.3 for red (and thus 0.7 for black).

The principle of maximum likelihood establishes that, given the data, we can formulate a model and tweak its parameters to maximize the probability (likelihood) of having observed what we did observe. Additionally, maximum likelihood allows us to calculate the precision (standard error) of each estimated coefficient easily. They are obtained by finding the curvature of the log-likelihood with respect to each parameter; this is obtained by finding the second-order derivatives of the log-likelihood with respect to each parameter.

The likelihood is essentially a probability composed of the multiplication of several probabilities. Multiplying lots of probabilities is never a good idea, because if the probabilities are small, we would very likely end up with a very small number. If that number is too small, then the computer won't be able to represent it accurately. Therefore, what we end up using is the log-likelihood, which is the sum of the logarithms of those probabilities.

In many situations, we also want to know if the coefficients are statistically different from zero. Imagine we have a sample of growth rates for many companies for a particular year, and we want to use the average as an indicator of whether the economy is growing or not. In other words, we want to test whether the mean is equal to zero or not. We could fit that distribution of growth rates to a Gaussian distribution (which has two parameters, ), and test whether (estimated ) is statistically equal to zero. In a Gaussian distribution, the mean is . When doing hypothesis testing, we need to specify a null hypothesis and an alternative one. For this case, the null hypothesis is that this parameter is equal to zero. Intuition would tell us that if an estimated parameter is large, we can reject the null hypothesis. The problem is that we need to define what large is. This is why we don't use the estimated coefficients, but a statistic called the Z value—this is defined as the value that we observed divided by the standard error. It can be proven that these are distributed according to a Gaussian distribution.

So, once we have the Z value statistic, how can we reject or not reject the null hypothesis? Assuming that the null hypothesis is true (that the coefficient is equal to zero), we can compute the probability that we get a test statistic as large or larger than the one we got (these are known as p-values). Remember that we assume that the coefficients have fixed values, but we will observe random deviations from them in our samples (we actually have one sample). If the probability of finding them to be as large as the ones that we observed is small, assuming that the true ones are zero, then that implies that luck alone can't explain the coefficients that we got. The final conclusion in that case is to reject the null hypothesis and conclude that the coefficient is different from zero.

Getting ready

The bbmle package can be installed using the install.packages("bbmle") function in R.

How to do it...

In this exercise, we will generate a 1000 random gamma deviates with its two parameters set to shape=20 and rate=2. We will then estimate the two parameters by using the mle2 function in the bbmle package. This function will also return the Z values, and the p-values. Note that we need to assume a distribution that we will use to fit the parameters (in general we will receive data, and we will need to assume which distribution is reasonable). In this case, since we are generating the data, we already know that the data comes from a gamma distribution.

We will use the bbmle package, which will allow us to maximize the log-likelihood. This package essentially wraps an appropriate numerical maximization routine; we only need to pass a function that computes the sum of the log-likelihood across the whole dataset.

  1. Generate 1000 random gamma deviations with its parameters set to shape=20 and rate=2 as follows:
library(bbmle)
N <- 1000
xx <- rgamma(N, shape=20, rate=2)
  1. Pass a function that computes the sum of the log-likelihood across the whole dataset as follows:
LL <- function(shape, rate) {
R = suppressWarnings(dgamma(xx, shape=shape, rate=rate))
return(-sum(log(R)))
}
  1. Estimate the two parameters by using the mle2 function in the bbmle package as follows:
P_1000 = mle2(LL, start = list(shape = 1, rate=1))
summary(P_1000)

The estimated coefficients, standard errors, and p-values (N=10) are as follows:

Estimate Std. error Z value p-value
Shape 19.04 0.84 22.54 <2.2e-16***
Rate 1.89 0.08 22.68 <2.2e-16***

The standard errors are very small relative to the estimated coefficients, which is to be expected as we have a large sample (1,000 observations). The p-values are consequently extremely small (the asterisks mark that these values are smaller than 0.001). When the p-values are small we say that they are significative (choosing a threshold is somewhat debatable, but most people use 0.05—in this case, we would say that they are highly significative).

How it works...

The LL function wraps the log-likelihood computation, and is called by the mle2 function sequentially. This function will use a derivative-based algorithm to find the maximum of the log-likelihood.

There's more...

Within a maximum likelihood context, the standard errors depend on the number of observations—the more observations we have, the smaller the standard errors will be (greater precision). As we can see in the following results, we get standard errors that are almost 50% of the estimated coefficients:

N <- 10
x <- rgamma(N, shape=20,rate=2)
LL <- function(shape, rate) {
R = suppressWarnings(dgamma(x, shape=shape, rate=rate))
return(-sum(log(R)))
}

P_10 = mle2(LL, start = list(shape = 1, rate=1))
summary(P_10)

The estimated coefficients and standard errors (N=10) are as follows:

Estimate Std. error Z value p-value
Shape 13.76 6.08 2.24 0.02*
Rate 1.36 0.61 2.22 0.02*

The standard errors are much larger than before, almost 50% of their estimated coefficients. Consequently, the p-values are much larger than before, but still significative at the 0.05 level (which is why we get an asterisk). We still conclude that the coefficients are different from zero.

We can also compute confidence intervals using the confint function (in this case, we will use 95% intervals). These intervals can be inverted to get hypothesis tests. For example, we can test whether the shape is equal to 18 with a 95% confidence for our 1,000-sample example, by assessing if 18 is between the upper and lower boundaries; since 18 is between 17.30 and 20.59, we can't reject that the shape is equal to 18. Note that the confidence intervals are much tighter for the 1,000-sample case than for the 10-sample one. This is to be expected, as the precision depends on the sample size (we have already seen that the standard deviation for each estimated parameter depends on the sample size).

This is done via the following command:

confint(P_1000)
confint(P_10)

The confidence intervals are as follows:

Parameter Sample size 2.5% 97.5%
Shape 10 13.64 81.08
Shape 1,000 17.30 20.59
Rate 10 1.48 8.93
Rate 1,000 1.71 2.04

See also

Calculating densities, quantiles, and CDFs

R provides a vast number of functions for working with statistical distributions. These can be either discrete or continuous. Statistical functions are important, because in statistics we generally need to assume that the data is distributed to some distribution.

Let's assume we have an variable distributed according to a specific distribution. The density function is a function that maps every value in the domain in the distribution of the variable with a probability. The cumulative density function (CDF) returns the cumulative probability mass for each value of . The quantile function expects a probability (between 0 and 1) and returns the value of that has a probability mass of to the left. For most distributions, we can use specific R functions to calculate these. On the other hand, if we want to generate random numbers according to a distribution, we can use R's random number generators random number generators (RNGs).

Getting ready

No specific package is needed for this recipe.

How to do it...

In this recipe we will first generate some Gaussian numbers and then, using the pnorm() and qnorm() functions, we will calculate the area to the left and to the right of x=2, and get the 90th quantile to plot the density.

  1. Generate 10000 Gaussian random numbers:
vals = rnorm(10000,0,1)
  1. Plot the density and draw a red line at x=2:
plot(density(vals))
abline(v=2,col="red")
  1. Calculate the area to the left and to the right of x=2, using the pnorm() function and use the qnorm() quantile function to get the 97.7th quantile:
print(paste("Area to the left of x=2",pnorm(2,0,1)))
print(paste("Area to the right of x=2",1-pnorm(2,0,1)))
print(paste("90th Quantile: x value that has 97.72% to the left",qnorm(0.9772,0,1)))

After running the preceding code, we get the following output:

The following screenshot shows the density with a vertical line at 2:

How it works...

Most distributions in R have densities, cumulative densities, quantiles, and RNGs. They are generally called in R using the same approach (d for densities, q for quantiles, r for random numbers, and p for the cumulative density function) combined with the distribution name.

For example, qnorm returns the quantile function for a normal-Gaussian distribution, and qchisq returns the quantile function for the chi-squared distribution. pnorm returns the cumulative distribution function for a Gaussian distribution; pt returns it for a Student's t-distribution.

As can be seen in the diagram immediately previous, when we get the 97.7% quantile, we get 1.99, which coincides with the accumulated probability we get when we do pnorm() for x=2.

There's more...

We can use the same approach for other distributions. For example, we can get the area to the left of x=3 for a chi-squared distribution with 33 degrees of freedom:

print(paste("Area to the left of x=3",pchisq(3,33)))

After running the preceding code we get the following output:

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn how to apply statistical methods to your everyday research with handy recipes
  • Foster your analytical skills and interpret research across industries and business verticals
  • Perform t-tests, chi-squared tests, and regression analysis using modern statistical techniques

Description

R is a popular programming language for developing statistical software. This book will be a useful guide to solving common and not-so-common challenges in statistics. With this book, you'll be equipped to confidently perform essential statistical procedures across your organization with the help of cutting-edge statistical tools. You'll start by implementing data modeling, data analysis, and machine learning to solve real-world problems. You'll then understand how to work with nonparametric methods, mixed effects models, and hidden Markov models. This book contains recipes that will guide you in performing univariate and multivariate hypothesis tests, several regression techniques, and using robust techniques to minimize the impact of outliers in data.You'll also learn how to use the caret package for performing machine learning in R. Furthermore, this book will help you understand how to interpret charts and plots to get insights for better decision making. By the end of this book, you will be able to apply your skills to statistical computations using R 3.5. You will also become well-versed with a wide array of statistical techniques in R that are extensively used in the data science industry.

Who is this book for?

If you are a quantitative researcher, statistician, data analyst, or data scientist looking to tackle various challenges in statistics, this book is what you need! Proficiency in R programming and basic knowledge of linear algebra is necessary to follow along the recipes covered in this book.

What you will learn

  • Become well versed with recipes that will help you interpret plots with R
  • Formulate advanced statistical models in R to understand its concepts
  • Perform Bayesian regression to predict models and input missing data
  • Use time series analysis for modelling and forecasting temporal data
  • Implement a range of regression techniques for efficient data modelling
  • Get to grips with robust statistics and hidden Markov models
  • Explore ANOVA (Analysis of Variance) and perform hypothesis testing
Estimated delivery fee Deliver to Colombia

Standard delivery 10 - 13 business days

$19.95

Premium delivery 3 - 6 business days

$40.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 29, 2019
Length: 448 pages
Edition : 1st
Language : English
ISBN-13 : 9781789802566
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Redeem a companion digital copy on all Print orders
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Colombia

Standard delivery 10 - 13 business days

$19.95

Premium delivery 3 - 6 business days

$40.95
(Includes tracking information)

Product Details

Publication date : Mar 29, 2019
Length: 448 pages
Edition : 1st
Language : English
ISBN-13 : 9781789802566
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 103.97
R Statistics Cookbook
$26.99
Machine Learning with R Quick Start Guide
$32.99
Mastering Machine Learning with R
$43.99
Total $ 103.97 Stars icon

Table of Contents

11 Chapters
Getting Started with R and Statistics Chevron down icon Chevron up icon
Univariate and Multivariate Tests for Equality of Means Chevron down icon Chevron up icon
Linear Regression Chevron down icon Chevron up icon
Bayesian Regression Chevron down icon Chevron up icon
Nonparametric Methods Chevron down icon Chevron up icon
Robust Methods Chevron down icon Chevron up icon
Time Series Analysis Chevron down icon Chevron up icon
Mixed Effects Models Chevron down icon Chevron up icon
Predictive Models Using the Caret Package Chevron down icon Chevron up icon
Bayesian Networks and Hidden Markov Models Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6
(5 Ratings)
5 star 40%
4 star 20%
3 star 20%
2 star 0%
1 star 20%
Leo Jul 02, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Lots of examples provided.
Amazon Verified review Amazon
mark david walker Nov 04, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
A good guide to a range of statistical techniques in R. Recommend for someone wishing to deepen an introductory knowledge of R.
Amazon Verified review Amazon
Amazon Customer May 06, 2019
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
understanding R with the help of algorithms
Amazon Verified review Amazon
Neha Oct 16, 2023
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Book is nice
Subscriber review Packt
Papu Siameja Feb 06, 2024
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I haven't been able to download and read a pdf copy of this book. I sent a message about this at the time of purchase but have not received a response. That is a disappointing. The one star is for the disappointing customer service, rather than the content of the book.
Feefo Verified review Feefo
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the digital copy I get with my Print order? Chevron down icon Chevron up icon

When you buy any Print edition of our Books, you can redeem (for free) the eBook edition of the Print Book you’ve purchased. This gives you instant access to your book when you make an order via PDF, EPUB or our online Reader experience.

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela