Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Projects

You're reading from   R Deep Learning Projects Master the techniques to design and develop neural network models in R

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788478403
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Pablo Maldonado Pablo Maldonado
Author Profile Icon Pablo Maldonado
Pablo Maldonado
Arrow right icon
View More author details
Toc

Text fraud detection

Fraud has become an issue beyond the traditional transaction fraud. Many websites, for instance, rely on user reviews about services, such as restaurants, hotels or tourist attractions, that are monetized in different ways. If the users lose trust in those reviews, for example, by a business owner deliberately messing with the good reviews for his or her own business, then the website will find it hard to regain that trust and to remain profitable. Hence, it is important to detect such potential issues. 

How can autoencoders help us with this? As before, the idea is to learn the representation of a normal review on a website, and then find those that do not fit the normal review. The issue with text data is that there is some processing to be done before. We will illustrate this with an example, which will also serve as a motivation for the different...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime