Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Parallel Programming Cookbook

You're reading from   Python Parallel Programming Cookbook Master efficient parallel programming to build powerful applications using Python

Arrow left icon
Product type Paperback
Published in Aug 2015
Publisher
ISBN-13 9781785289583
Length 286 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Getting Started with Parallel Computing and Python FREE CHAPTER 2. Thread-based Parallelism 3. Process-based Parallelism 4. Asynchronous Programming 5. Distributed Python 6. GPU Programming with Python Index

Preface

The study of computer science should cover not only the principles on which computational processing is based, but should also reflect the current state of knowledge of these fields. Today, the technology requires that professionals from all branches of computer science know both the software and hardware whose interaction at all levels is the key to understanding the basics of computational processing.

For this reason, in this book, a special focus is given on the relationship between hardware architectures and software.

Until recently, programmers could rely on the work of the hardware designers, compilers, and chip manufacturers to make their software programs faster or more efficient without the need for changes.

This era is over. So now, if a program is to run faster, it must become a parallel program.

Although the goal of many researchers is to ensure that programmers are not aware of the parallel nature of the hardware for which they write their programs, it will take many years before this actually becomes possible. Nowadays, most programmers need to thoroughly understand the link between hardware and software so that the programs can be run efficiently on modern computer architectures.

To introduce the concepts of parallel programming, the Python programming language has been adopted. Python is fun and easy to use, and its popularity has grown steadily in recent years. Python was developed more than 10 years ago by Guido van Rossum, who derived Python's syntax simplicity and ease of use largely from ABC, which is a teaching language that was developed in the 80s.

In addition to this specific context, Python was created to solve real-life problems, and it borrows a wide variety of typical characteristics of programming languages, such as C ++, Java, and Scheme. This is one of its most remarkable features, which has led to its broad appeal among professional software developers, the scientific research industry, and computer science educators. One of the reasons why Python is liked so much is because it provides the best balance between the practical and conceptual approaches. It is an interpreted language, so you can start doing things immediately without getting lost in the problems of compilation and linking. Python also provides an extensive software library that can be used in all sorts of tasks ranging from the Web, graphics, and of course, parallel computing. This practical aspect is a great way to engage readers and allow them to carry out projects that are important in this book.

This book contains a wide variety of examples that are inspired by many situations, and these offer you the opportunity to solve real-life problems. This book examines the principles of software design for parallel architectures, insisting on the importance of clarity of the programs and avoiding the use of complex terminology in favor of clear and direct examples. Each topic is presented as part of a complete, working Python program, which is followed by the output of the program in question.

The modular organization of the various chapters provides a proven path to move from the simplest arguments to the most advanced ones, but this is also suitable for those who only want to learn a few specific issues.

I hope that the settings and content of this book are able to provide you with a useful contribution for your better understanding and dissemination of parallel programming techniques.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image