Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Natural Language Processing Cookbook

You're reading from   Python Natural Language Processing Cookbook Over 50 recipes to understand, analyze, and generate text for implementing language processing tasks

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781838987312
Length 284 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Zhenya Antić Zhenya Antić
Author Profile Icon Zhenya Antić
Zhenya Antić
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Chapter 1: Learning NLP Basics 2. Chapter 2: Playing with Grammar FREE CHAPTER 3. Chapter 3: Representing Text – Capturing Semantics 4. Chapter 4: Classifying Texts 5. Chapter 5: Getting Started with Information Extraction 6. Chapter 6: Topic Modeling 7. Chapter 7: Building Chatbots 8. Chapter 8: Visualizing Text Data 9. Other Books You May Enjoy

Training your own embeddings model

We can now train our own word2vec model on a corpus. For this task, we will use the top 20 Project Guttenberg books, which includes The Adventures of Sherlock Holmes. The reason for this is that training a model on just one book will result in suboptimal results. Once we get more text, the results will be better.

Getting ready

You can download the dataset for this recipe from Kaggle: https://www.kaggle.com/currie32/project-gutenbergs-top-20-books. The dataset includes files in RTF format, so you will have to save them as text. We will use the same package, gensim, to train our custom model.

We will use the pickle package to save the model on disk. If you do not have it installed, install it by using pip:

pip install pickle

How to do it…

We will read in all 20 books and use the text to create a word2vec model. Make sure all the books are located in one directory. Let's get started:

  1. Import the necessary packages...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image