A restricted Boltzmann machine (RBM) is an unsupervised model. As an undirected graphical model with two layers (observed and hidden), it is useful to learn a different representation of input data along with the hidden layer. This was the first structural building block of deep learning, particularly when the computational resources to learn about a deep neural net with backpropagation were not available (a stacked RBM was used instead). It restricts the connectivity of the network (only allowing a bipartite graph in between the hidden and observed set of nodes) to make inference easy. It is an energy-based model; the joint distribution is modeled using the energy function. To infer the most probable observation, we need to choose the one with the least energy. This model is generally trained on binary images...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine