Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Time Series Analysis

You're reading from   Practical Time Series Analysis Master Time Series Data Processing, Visualization, and Modeling using Python

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788290227
Length 244 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Avishek Pal Avishek Pal
Author Profile Icon Avishek Pal
Avishek Pal
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
Arrow right icon
View More author details
Toc

Summary

In this chapter, we covered auto-regressive models such as a MA model to capture serial correlation using error relationship. On similar lines, AR models were covered, which set up the forecasting using the lags as dependent observations. The AR models are good to capture trend information. The ARMA-based approach was also illustrated, which integrates AR and MA models to capture any time-based trends and catastrophic events leading to a lot of error that will take time to correct such as an economy meltdown. All these models assume stationarity; in scenarios where stationarity is not present, a differencing-based model such as ARIMA is proposed, which performs differencing in time series datasets to remove any trend-related components. The forecasting approaches were illustrated with examples using Python's tsa module.

The current chapter focuses on using statistical...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime