Now that you have seen RL working in progressively challenging environments, we will conclude this chapter by demonstrating that the same concepts can be applied to a self-driving car. Since it is impractical to see this working on an actual car, we will resort to a simulated environment. The environment is going to be a full-fledged city of traffic, with cars and additional details within the image of a road. The actor (agent) is a car. The inputs to the car are going to be various sensory inputs such as a dashcam, Light Detection And Ranging (LIDAR) sensors, and GPS coordinates. The outputs are going to be how fast/slow the car will move, along with the level of steering. This simulation will attempt to be an accurate representation of real-world physics. Thus, note that the fundamentals will remain the same, whether it is a car simulation or a real car.
Implementing an agent to perform autonomous driving
Note that the environment we are going to install needs a graphical user interface...