Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering  Node.js

You're reading from   Mastering Node.js Build robust and scalable real-time server-side web applications efficiently

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781785888960
Length 498 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Sandro Pasquali Sandro Pasquali
Author Profile Icon Sandro Pasquali
Sandro Pasquali
Kevin Faaborg Kevin Faaborg
Author Profile Icon Kevin Faaborg
Kevin Faaborg
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Understanding the Node Environment FREE CHAPTER 2. Understanding Asynchronous Event-Driven Programming 3. Streaming Data Across Nodes and Clients 4. Using Node to Access the Filesystem 5. Managing Many Simultaneous Client Connections 6. Creating Real-Time Applications 7. Using Multiple Processes 8. Scaling Your Application 9. Microservices 10. Testing Your Application 11. Organizing Your Work into Modules 12. Creating Your Own C++ Add-ons

Node's unique design

First, let's take an accurate look at the total time cost when your program asks the system to perform different kinds of services. I/O is expensive. In the following chart (taken from Ryan Dahl's original presentation on Node), we can see how many clock cycles typical system tasks consume. The relative cost of I/O operations is striking:

L1 cache
3 cycles
L2 cache 14 cycles
RAM
250 cycles
Disk 41,000,000 cycles
Network 240,000,000 cycles

The reasons are clear enough: a disk is a physical device, a spinning metal platter — storing and retrieving that data is much slower than moving data between solid-state devices (such as microprocessors and memory chips), or indeed optimized on-chip L1/L2 caches. Similarly, data does not move from point to point on a network instantaneously. Light itself needs 0...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime