Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning with scikit-learn

You're reading from   Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher
ISBN-13 9781788299879
Length 254 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gavin Hackeling Gavin Hackeling
Author Profile Icon Gavin Hackeling
Gavin Hackeling
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Fundamentals of Machine Learning FREE CHAPTER 2. Simple Linear Regression 3. Classification and Regression with k-Nearest Neighbors 4. Feature Extraction 5. From Simple Linear Regression to Multiple Linear Regression 6. From Linear Regression to Logistic Regression 7. Naive Bayes 8. Nonlinear Classification and Regression with Decision Trees 9. From Decision Trees to Random Forests and Other Ensemble Methods 10. The Perceptron 11. From the Perceptron to Support Vector Machines 12. From the Perceptron to Artificial Neural Networks 13. K-means 14. Dimensionality Reduction with Principal Component Analysis

Machine learning tasks

Two of the most common supervised machine learning tasks are classification and regression. In classification tasks, the program must learn to predict discrete values for one or more response variables from one or more features. That is, the program must predict the most probable category, class, or label for new observations. Applications of classification include predicting whether a stock's price will rise or fall, or deciding whether a news article belongs to the politics or leisure sections. In regression problems, the program must predict the values of one more or continuous response variables from one or more features. Examples of regression problems include predicting the sales revenue for a new product, or predicting the salary for a job based on its description. Like classification, regression problems require supervised learning.

A common unsupervised learning task is to discover groups of related observations, called clusters, within the dataset. This task, called clustering or cluster analysis, assigns observations into groups such that observations within a groups are more similar to each other based on some similarity measure than they are to observations in other groups. Clustering is often used to explore a dataset. For example, given a collection of movie reviews, a clustering algorithm might discover the sets of positive and negative reviews. The system will not be able to label the clusters as positive or negative; without supervision, it will only have knowledge that the grouped observations are similar to each other by some measure. A common application of clustering is discovering segments of customers within a market for a product. By understanding what attributes are common to particular groups of customers, marketers can decide what aspects of their campaigns to emphasize. Clustering is also used by internet radio services; given a collection of songs, a clustering algorithm might be able to group the songs according to their genres. Using different similarity measures, the same clustering algorithm might group the songs by their keys, or by the instruments they contain.

Dimensionality reduction is another task that is commonly accomplished using unsupervised learning. Some problems may contain thousands or millions of features, which can be computationally costly to work with. Additionally, the program's ability to generalize may be reduced if some of the features capture noise or are irrelevant to the underlying relationship. Dimensionality reduction is the process of discovering the features that account for the greatest changes in the response variable. Dimensionality reduction can also be used to visualize data. It is easy to visualize a regression problem such as predicting the price of a home from its size; the size of the home can be plotted on the graph's x axis, and the price of the home can be plotted on the y axis. It is similarly easy to visualize the housing price regression problem when a second feature is added; the number of bathrooms in the house could be plotted on the z axis, for instance. A problem with thousands of features, however, becomes impossible to visualize.

You have been reading a chapter from
Mastering Machine Learning with scikit-learn - Second Edition
Published in: Jul 2017
Publisher:
ISBN-13: 9781788299879
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime