Anomaly detection in Elastic APM
Elastic APM takes application monitoring and performance management to a whole new level by allowing users to instrument their application code to get deep insights into the performance of individual microservices and transactions. In complex environments, this could generate a large number of measurements and poses a potentially paradoxical situation – one in which greater observability is obtained via this detailed level of measurement while possibly overwhelming the analyst who has to sift through the results for actionable insights.
Fortunately, Elastic APM and Elastic ML are a match made in heaven. Anomaly detection not only automatically adapts to the unique performance characteristics of each transaction type via unsupervised machine learning, but it can also scale to handle the possibly voluminous amounts of data that APM can generate.
While the user is always free to create anomaly detection jobs against any kind of time-series...