Distributional semantics represents words as vectors in the space of senses. The vectors corresponding to the words with similar meanings should be close to each other in this space. How to build such vectors is not a simple question, however. The simplest approach to take is to start from one-hot vectors for the words, but then the vectors will be both sparse and giant, each one of the same length as the number of words in the vocabulary. That's why we use dimensionality reduction with autoencoder-like architecture.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand