Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms Popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789347999
Length 522 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Regression Algorithms 5. Linear Classification Algorithms 6. Naive Bayes and Discriminant Analysis 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Advanced Clustering 11. Hierarchical Clustering 12. Introducing Recommendation Systems 13. Introducing Natural Language Processing 14. Topic Modeling and Sentiment Analysis in NLP 15. Introducing Neural Networks 16. Advanced Deep Learning Models 17. Creating a Machine Learning Architecture 18. Other Books You May Enjoy

Logistic regression

Even if called regression, this is a classification method that is based on the probability of a sample belonging to a class. As our probabilities must be continuous in ℜ and bounded between (0, 1), it's necessary to introduce a threshold function to filter the term z. As already done with linear regression, we can get rid of the extra parameter corresponding to the intercept by adding a 1 element at the end of each input vector:

In this way, we can consider a single parameter vector θ, containing m + 1 elements, and compute the z-value with a dot product:

Now, let's suppose we introduce the probability p(xi) that an element belongs to class 1. Clearly, the same element belongs to class 0 with a probability 1 - p(xi). Logistic regression is mainly based on the idea of modeling the odds of belonging to class 1 using an exponential function...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image