Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Introduction to R for Quantitative Finance
Introduction to R for Quantitative Finance

Introduction to R for Quantitative Finance: R is a statistical computing language that's ideal for answering quantitative finance questions. This book gives you both theory and practice, all in clear language with stacks of real-world examples. Ideal for R beginners or expert alike.

eBook
$9.99 $25.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Introduction to R for Quantitative Finance

Chapter 1. Time Series Analysis

Time series analysis is concerned with the analysis of data collected over time. Adjacent observations are typically dependent. Time series analysis hence deals with techniques for the analysis of this dependence.

The objective of this chapter is to introduce some common modeling techniques by means of specific applications. We will see how to use R to solve these real-world examples. We begin with some thoughts about how to store and process time series data in R. Afterwards, we deal with linear time series analysis and how it can be used to model and forecast house prices. In the subsequent section, we use the notion of cointegration to improve on the basic minimal variance hedge ratio by taking long-run trends into consideration. The chapter concludes with a section on how to use volatility models for risk management purposes.

Working with time series data


The native R classes suitable for storing time series data include vector, matrix, data.frame, and ts objects. But the types of data that can be stored in these objects are narrow; furthermore, the methods provided by these representations are limited in scope. Luckily, there exist specialized objects that deal with more general representation of time series data: zoo, xts, or timeSeries objects, available from packages of the same name.

It is not necessary to create time series objects for every time series analysis problem, but more sophisticated analyses require time series objects. You could calculate the mean or variance of time series data represented as a vector in R, but if you want to perform a seasonal decomposition using decompose, you need to have the data stored in a time series object.

In the following examples, we assume you are working with zoo objects because we think it is one of the most widely used packages. Before we can use zoo objects, we need to install and load the zoo package (if you have already installed it, you only need to load it) using the following command:

> install.packages("zoo")
> library("zoo")

In order to familiarize ourselves with the available methods, we create a zoo object called aapl from the daily closing prices of Apple's stock, which are stored in the CSV file aapl.csv. Each line on the sheet contains a date and a closing price separated by a comma. The first line contains the column headings (Date and Close). The date is formatted according to the recommended primary standard notation of ISO 8601 (YYYY-MM-DD). The closing price is adjusted for stock splits, dividends, and related changes.

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

We load the data from our current working directory using the following command:

> aapl<-read.zoo("aapl.csv",+   sep=",", header = TRUE, format = "%Y-%m-%d")

To get a first impression of the data, we plot the stock price chart and specify a title for the overall plot (using the main argument) and labels for the x and y axis (using xlab and ylab respectively).

> plot(aapl, main = "APPLE Closing Prices on NASDAQ",+   ylab = "Price (USD)", xlab = "Date")

We can extract the first or last part of the time series using the following commands:

> head(aapl)
2000-01-03 2000-01-04 2000-01-05 2000-01-06 2000-01-07 2000-01-10
     27.58      25.25      25.62      23.40      24.51      24.08
> tail(aapl)
2013-04-17 2013-04-18 2013-04-19 2013-04-22 2013-04-23 2013-04-24
    402.80     392.05     390.53     398.67     406.13     405.46

Apple's all-time high and the day on which it occurred can be found using the following command:

> aapl[which.max(aapl)]
2012-09-19
    694.86

When dealing with time series, one is normally more interested in returns instead of prices. This is because returns are usually stationary. So we will calculate simple returns or continuously compounded returns (in percentage terms).

> ret_simple <- diff(aapl) / lag(aapl, k = -1) * 100
> ret_cont   <- diff(log(aapl)) * 100

Summary statistics about simple returns can also be obtained. We use the coredata method here to indicate that we are only interested in the stock prices and not the index (dates).

> summary(coredata(ret_simple))
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.
-51.86000  -1.32500   0.07901   0.12530   1.55300  13.91000

The biggest single-day loss is -51.86%. The date on which that loss occurred can be obtained using the following command:

> ret_simple[which.min(ret_simple)]
2000-09-29
 -51.85888

A quick search on the Internet reveals that the large movement occurred due to the issuance of a profit warning. To get a better understanding of the relative frequency of daily returns, we can plot the histogram. The number of cells used to group the return data can be specified using the break argument.

> hist(ret_simple, breaks=100, main = "Histogram of Simple Returns",+  xlab="%")

We can restrict our analysis to a subset (a window) of the time series. The highest stock price of Apple in 2013 can be found using the following command lines:

> aapl_2013 <- window(aapl, start = '2013-01-01', end = '2013-12-31')
> aapl_2013[which.max(aapl_2013)]
2013-01-02 
    545.85

The quantiles of the return distribution are of interest from a risk-management perspective. We can, for example, easily determine the 1 day 99% Value-at-Risk using a naive historical approach.

> quantile(ret_simple, probs = 0.01)
       1%        
-7.042678

Hence, the probability that the return is below 7% on any given day is only 1%. But if this day occurs (and it will occur approximately 2.5 times per year), 7% is the minimum amount you will lose.

Linear time series modeling and forecasting


An important class of linear time series models is the family of Autoregressive Integrated Moving Average (ARIMA) models, proposed by Box and Jenkins (1976). It assumes that the current value can depend only on the past values of the time series itself or on past values of some error term.

According to Box and Jenkins, building an ARIMA model consists of three stages:

  1. Model identification.

  2. Model estimation.

  3. Model diagnostic checking.

The model identification step involves determining the order (number of past values and number of past error terms to incorporate) of a tentative model using either graphical methods or information criteria. After determining the order of the model, the parameters of the model need to be estimated, generally using either the least squares or maximum likelihood methods. The fitted model must then be carefully examined to check for possible model inadequacies. This is done by making sure the model residuals behave as white noise; that is, there is no linear dependence left in the residuals.

Modeling and forecasting UK house prices

In addition to the zoo package, we will employ some methods from the forecast package. If you haven't installed it already, you need to use the following command to do so:

> install.packages("forecast")

Afterwards, we need to load the class using the following command:

> library("forecast")

First, we store the monthly house price data (source: Nationwide Building Society) in a zoo time series object.

> hp <- read.zoo("UKHP.csv", sep = ",",+   header = TRUE, format = "%Y-%m", FUN = as.yearmon)

The FUN argument applies the given function (as.yearmon, which represents the monthly data points) to the date column. To make sure we really stored monthly data (12 subperiods per period), by specifying as.yearmon, we query for the frequency of the data series.

> frequency(hp)
[1] 12

The result means that we have twelve subperiods (called months) in a period (called year). We again use simple returns for our analysis.

> hp_ret <- diff(hp) / lag(hp, k = -1) * 100

Model identification and estimation

We use the auto.arima function provided by the forecast package to identify the optimal model and estimate the coefficients in one step. The function takes several arguments besides the return series (hp_ret). By specifying stationary = TRUE,we restrict the search to stationary models. In a similar vein, seasonal = FALSE restricts the search to non-seasonal models. Furthermore, we select the Akaike information criteria as the measure of relative quality to be used in model selection.

> mod <- auto.arima(hp_ret, stationary = TRUE, seasonal = FALSE,+   ic="aic")

To determine the fitted coefficient values, we query the model output.

> mod
Series: hp_ret
ARIMA(2,0,0) with non-zero mean 

Coefficients:
         ar1     ar2  intercept
      0.2299  0.3491     0.4345
s.e.  0.0573  0.0575     0.1519

sigma^2 estimated as 1.105:  log likelihood=-390.97
AIC=789.94   AICc=790.1   BIC=804.28

An AR(2) process seems to fit the data best, according to Akaike's Information Criteria. For visual confirmation, we can plot the partial autocorrelation function using the command pacf. It shows non-zero partial autocorrelations until lag two, hence an AR process of order two seems to be appropriate. The two AR coefficients, the intercept (which is actually the mean if the model contains an AR term), and the respective standard errors are given. In the following example, they are all significant at the 5% level since the respective confidence intervals do not contain zero:

> confint(mod)
              2.5 %    97.5 %
ar1       0.1174881 0.3422486
ar2       0.2364347 0.4617421
intercept 0.1368785 0.7321623

If the model contains coefficients that are insignificant, we can estimate the model anew using the arima function with the fixed argument, which takes as input a vector of elements 0 and NA. NA indicates that the respective coefficient shall be estimated and 0 indicates that the respective coefficient should be set to zero.

Model diagnostic checking

A quick way to validate the model is to plot time-series diagnostics using the following command:

> tsdiag(mod)

The output of the preceding command is shown in the following figure:

Our model looks good since the standardized residuals don't show volatility clusters, no significant autocorrelations between the residuals according to the ACF plot, and the Ljung-Box test for autocorrelation shows high p-values, so the null hypothesis of independent residuals cannot be rejected.

To assess how well the model represents the data in the sample, we can plot the raw monthly returns (the thin black solid line) versus the fitted values (the thick red dotted line).

> plot(mod$x, lty = 1, main = "UK house prices: raw data vs. fitted+   values", ylab = "Return in percent", xlab = "Date")
> lines(fitted(mod), lty = 2,lwd = 2, col = "red")

The output is shown in the following figure:

Furthermore, we can calculate common measures of accuracy.

> accuracy(mod)
ME      RMSE      MAE          MPE   MAPE    MASE
0.00120 1.0514    0.8059       -Inf  Inf     0.792980241

This command returns the mean error, root mean squared error, mean absolute error, mean percentage error, mean absolute percentage error, and mean absolute scaled error.

Forecasting

To predict the monthly returns for the next three months (April to June 2013), use the following command:

> predict(mod, n.ahead=3)
$pred
           Apr       May       Jun
2013 0.5490544 0.7367277 0.5439708

$se
          Apr      May      Jun
2013 1.051422 1.078842 1.158658

So we expect a slight increase in the average home prices over the next three months, but with a high standard error of around 1%. To plot the forecast with standard errors, we can use the following command:

> plot(forecast(mod))

Cointegration


The idea behind cointegration, a concept introduced by Granger (1981) and formalized by Engle and Granger (1987), is to find a linear combination between non-stationary time series that result in a stationary time series. It is hence possible to detect stable long-run relationships between non-stationary time series (for example, prices).

Cross hedging jet fuel

Airlines are natural buyers of jet fuel. Since the price of jet fuel can be very volatile, most airlines hedge at least part of their exposure to jet fuel price changes. In the absence of liquid jet fuel OTC instruments, airlines use related exchange traded futures contracts (for example, heating oil) for hedging purposes. In the following section, we derive the optimal hedge ratio using first the classical approach of taking into account only the short-term fluctuations between the two prices; afterwards, we improve on the classical hedge ratio by taking into account the long-run stable relationship between the prices as well.

We first load the necessary libraries. The urca library has some useful methods for unit root tests and for estimating cointegration relationships.

> library("zoo")
> install.packages("urca")
> library("urca")

We import the monthly price data for jet fuel and heating oil (in USD per gallon).

> prices <- read.zoo("JetFuelHedging.csv", sep = ",",+   FUN = as.yearmon, format = "%Y-%m", header = TRUE)

Taking into account only the short-term behavior (monthly price changes) of the two commodities, one can derive the minimum variance hedge by fitting a linear model that explains changes in jet fuel prices by changes in heating oil prices. The beta coefficient of that regression is the optimal hedge ratio.

> simple_mod <- lm(diff(prices$JetFuel) ~ diff(prices$HeatingOil)+0)

The function lm (for linear model) estimates the coefficients for a best fit of changes in jet fuel prices versus changes in heating oil prices. The +0 term means that we set the intercept to zero; that is, no cash holdings.

> summary(simple_mod)
Call:
lm(formula = diff(prices$JetFuel) ~ diff(prices$HeatingOil) +
    0)
Residuals:
     Min       1Q   Median       3Q      Max
-0.52503 -0.02968  0.00131  0.03237  0.39602

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
diff(prices$HeatingOil)  0.89059    0.03983   22.36   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0846 on 189 degrees of freedom
Multiple R-squared:  0.7257,   Adjusted R-squared:  0.7242
F-statistic: 499.9 on 1 and 189 DF,  p-value: < 2.2e-16

We obtain a hedge ratio of 0.89059 and a residual standard error of 0.0846. The cross hedge is not perfect; the resulting hedged portfolio is still risky.

We now try to improve on this hedge ratio by using an existing long-run relationship between the levels of jet fuel and heating oil futures prices. You can already guess the existence of such a relationship by plotting the two price series (heating oil prices will be in red) using the following command:

> plot(prices$JetFuel, main = "Jet Fuel and Heating Oil Prices",+   xlab = "Date", ylab = "USD")
> lines(prices$HeatingOil, col = "red")

We use Engle and Granger's two-step estimation technique. Firstly, both time series are tested for a unit root (non-stationarity) using the augmented Dickey-Fuller test.

> jf_adf <- ur.df(prices$JetFuel, type = "drift")
> summary(jf_adf)
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################

Test regression drift


Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.06212 -0.05015  0.00566  0.07922  0.38086 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  0.03050    0.02177   1.401  0.16283   
z.lag.1     -0.01441    0.01271  -1.134  0.25845   
z.diff.lag   0.19471    0.07250   2.686  0.00789 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.159 on 186 degrees of freedom
Multiple R-squared:  0.04099,   Adjusted R-squared:  0.03067
F-statistic: 3.975 on 2 and 186 DF,  p-value: 0.0204


Value of test-statistic is: -1.1335 0.9865

Critical values for test statistics:
      1pct  5pct 10pct
tau2 -3.46 -2.88 -2.57
phi1  6.52  4.63  3.81

The null hypothesis of non-stationarity (jet fuel time series contains a unit root) cannot be rejected at the 1% significance level since the test statistic of -1.1335 is not more negative than the critical value of -3.46. The same holds true for heating oil prices (the test statistic is -1.041).

> ho_adf <- ur.df(prices$HeatingOil, type = "drift")
> summary(ho_adf)

We can now proceed to estimate the static equilibrium model and test the residuals for a stationary time series using an augmented Dickey-Fuller test. Please note that different critical values [for example, from Engle and Yoo (1987)] must now be used since the series under investigation is an estimated one.

> mod_static <- summary(lm(prices$JetFuel ~ prices$HeatingOil))
> error <- residuals(mod_static)
> error_cadf <- ur.df(error, type = "none")
> summary(error_cadf)

The test statistic obtained is -8.912 and the critical value for a sample size of 200 at the 1% level is -4.00; hence we reject the null hypothesis of non-stationarity. We have thus discovered two cointegrated variables and can proceed with the second step; that is, the specification of an Error-Correction Model (ECM). The ECM represents a dynamic model of how (and how fast) the system moves back to the static equilibrium estimated earlier and is stored in the mod_static variable.

> djf <- diff(prices$JetFuel)
> dho <- diff(prices$HeatingOil)
> error_lag <- lag(error, k = -1)
> mod_ecm <- lm(djf ~ dho + error_lag)
> summary(mod_ecm)

Call:
lm(formula = djf ~ dho + error_lag + 0)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.19158 -0.03246  0.00047  0.02288  0.45117 

Coefficients:
          Estimate Std. Error t value Pr(>|t|)    
dho        0.90020    
0.03238  27.798   <2e-16 ***
error_lag -0.65540    0.06614  -9.909   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06875 on 188 degrees of freedom
Multiple R-squared:  0.8198,   Adjusted R-squared:  0.8179 
F-statistic: 427.6 on 2 and 188 DF,  p-value: < 2.2e-16

By taking into account the existence of a long-run relationship between jet fuel and heating oil prices (cointegration), the hedge ratio is now slightly higher (0.90020) and the residual standard error significantly lower (0.06875). The coefficient of the error term is negative (-0.65540): large deviations between the two prices are going to be corrected and prices move closer to their long-run stable relationship.

Modeling volatility


As we saw earlier, ARIMA models are used to model the conditional expectation of a process, given its past. For such a process, the conditional variance is constant. Real-world financial time series exhibit, among other characteristics, volatility clustering; that is, periods of relative calm are interrupted by bursts of volatility.

In this section we look at GARCH time series models that can take this stylized fact of real-world (financial) time series into account and apply these models to VaR forecasting.

Volatility forecasting for risk management

Financial institutions measure the risk of their activities using a Value-at-Risk (VaR), usually calculated at the 99% confidence level over a 10 business day horizon. This is the loss that is expected to be exceeded only 1% of the time.

We load the zoo library and import monthly return data for Intel Corporation from January 1973 to December 2008.

> library("zoo")
> intc <- read.zoo("intc.csv", header = TRUE,+   sep = ",", format = "%Y-%m", FUN = as.yearmon)

Testing for ARCH effects

A plot of the returns indicates that ARCH effects might exist in the monthly return data.

> plot(intc, main = "Monthly returns of Intel Corporation",+   xlab = "Date", ylab = "Return in percent")

The output of the preceding commands is as shown in the following figure:

We can use statistical hypothesis tests to verify our inkling. Two commonly used tests are as follows:

  • The Ljung-Box test for autocorrelation in squared returns (as a proxy for volatility)

  • The Lagrange Multiplier (LM) test by Engle (1982)

First, we perform the Ljung-Box test on the first 12 lags of the squared returns using the following command:

> Box.test(coredata(intc^2), type = "Ljung-Box", lag = 12)

   Box-Ljung test

data:  coredata(intc^2)
X-squared = 79.3451, df = 12, p-value = 5.502e-12

We can reject the null hypothesis of no autocorrelations in the squared returns at the 1% significance level. Alternatively, we could employ the LM test from the FinTS package, which gives the same result.

> install.packages("FinTS")
> library("FinTS")
> ArchTest(coredata(intc))

   ARCH LM-test; Null hypothesis: no ARCH effects

data:  coredata(intc)
Chi-squared = 59.3647, df = 12, p-value = 2.946e-08

Both tests confirm that ARCH effects exist in the monthly Intel returns; hence, an ARCH or GARCH model should be employed in modeling the return time series.

GARCH model specification

The most commonly used GARCH model, and one that is usually appropriate for financial time series as well, is a GARCH(1,1) model. We use the functions provided by the rugarch library for model specification, parameter estimation, backtesting, and forecasting. If you haven't installed the package, use the following command:

> install.packages("rugarch")

Afterwards, we can load the library using the following command:

> library("rugarch")

First, we need to specify the model using the function ugarchspec. For a GARCH(1,1) model, we need to set the garchOrder to c(1,1) and the model for the mean (mean.model) should be a white noise process and hence equal to armaOrder = c(0,0).

> intc_garch11_spec <- ugarchspec(variance.model = list(+   garchOrder = c(1, 1)),+  mean.model = list(armaOrder = c(0, 0)))

GARCH model estimation

The actual fitting of the coefficients by the method of maximum likelihood is done by the function ugarchfit using the model specification and the return data as inputs.

> intc_garch11_fit <- ugarchfit(spec = intc_garch11_spec,+  data = intc)

For additional arguments, see the Help on ugarchfit. The output of the fitted model (use the command intc_garch11_fit) reveals useful information, such as the values of the optimal parameters, the value of the log-likelihood function, and the information criteria.

Backtesting the risk model

A useful test for checking the model performance is to do a historical backtest. In a risk model backtest, we compare the estimated VaR with the actual return over the period. If the return is more negative than the VaR, we have a VaR exceedance. In our case, a VaR exceedance should only occur in 1% of the cases (since we specified a 99% confidence level).

The function ugarchroll performs a historical backtest on the specified GARCH model (here the model is intc_garch11_spec). We specify the backtest as follows:

  • The return data to be used is stored in the zoo object intc

  • The start period of the backtest (n.start) shall be 120 months after the beginning of the series (that is, January 1983)

  • The model should be reestimated every month (refit.every = 1)

  • We use a moving window for the estimation

  • We use a hybrid solver

  • We'd like to calculate the VaR (calculate.VaR = TRUE) at the 99% VaR tail level (VaR.alpha = 0.01)

  • We would like to keep the estimated coefficients (keep.coef = TRUE)

The following command shows all the preceding points for a backtest:

> intc_garch11_roll <- ugarchroll(intc_garch11_spec, intc,+   n.start = 120, refit.every = 1, refit.window = "moving",+   solver = "hybrid", calculate.VaR = TRUE, VaR.alpha = 0.01,+   keep.coef = TRUE)

We can examine the backtesting report using the report function. By specifying the type argument as VaR, the function executes the unconditional and conditional coverage tests for exceedances. VaR.alpha is the tail probability and conf.level is the confidence level on which the conditional coverage hypothesis test will be based.

> report(intc_garch11_roll, type = "VaR", VaR.alpha = 0.01,+   conf.level = 0.99)
VaR Backtest Report
===========================================
Model:            sGARCH-norm
Backtest Length:   312
Data:            

==========================================
alpha:            1%
Expected Exceed:   3.1
Actual VaR Exceed:	5
Actual %:         1.6%

Unconditional Coverage (Kupiec)
Null-Hypothesis:   Correct Exceedances
LR.uc Statistic:   0.968
LR.uc Critical:      6.635
LR.uc p-value:      0.325
Reject Null:      NO

Conditional Coverage (Christoffersen)
Null-Hypothesis:   Correct Exceedances and
               Independence of Failures
LR.cc Statistic:   1.131
LR.cc Critical:      9.21
LR.cc p-value:      0.568
Reject Null:      O

Kupiec's unconditional coverage compares the number of expected versus actual exceedances given the tail probability of VaR, while the Christoffersen test is a joint test of the unconditional coverage and the independence of the exceedances. In our case, despite the actual five exceedances versus an expectation of three, we can't reject the null hypothesis that the exceedances are correct and independent.

A plot of the backtesting performance can also be generated easily. First, create a zoo object using the extracted forecasted VaR from the ugarchroll object.

> intc_VaR <- zoo(intc_garch11_roll@forecast$VaR[, 1])

We overwrite the index property of the zoo object with rownames (year and month) from this object as well.

> index(intc_VaR) <- as.yearmon(rownames(intc_garch11_roll@forecast$VaR))

We do the same for the actual returns that are also stored in the ugarchroll object.

> intc_actual <- zoo(intc_garch11_roll@forecast$VaR[, 2])
> index(intc_actual) <- as.yearmon(rownames(intc_garch11_roll@forecast$VaR))

Now, we are able to plot the VaR versus the actual returns of Intel using the following commands:

> plot(intc_actual, type = "b", main = "99% 1 Month VaR Backtesting",+   xlab = "Date", ylab = "Return/VaR in percent")
> lines(intc_VaR, col = "red")
> legend("topright", inset=.05, c("Intel return","VaR"), col = c("black","red"), lty = c(1,1))

The following figure shows the output of the preceding command lines:

Forecasting

Now that we can be reasonably sure that our risk model works properly, we can produce VaR forecasts as well. The function ugarchforecast takes as arguments the fitted GARCH model (intc_garch11_fit) and the number of periods for which a forecast should be produced (n.ahead = 12; that is, twelve months).

> intc_garch11_fcst <- ugarchforecast(intc_garch11_fit, n.ahead = 12)

The resulting forecast can be expected by querying the forecast object as shown in the following command lines:

> intc_garch11_fcst
*------------------------------------*
*       GARCH Model Forecast         *
*------------------------------------*
Model: sGARCH
Horizon: 12
Roll Steps: 0
Out of Sample: 0

0-roll forecast [T0=Dec 2008]:
      Series  Sigma
T+1  0.01911 0.1168
T+2  0.01911 0.1172
T+3  0.01911 0.1177
T+4  0.01911 0.1181
T+5  0.01911 0.1184
T+6  0.01911 0.1188
T+7  0.01911 0.1191
T+8  0.01911 0.1194
T+9  0.01911 0.1197
T+10 0.01911 0.1200
T+11 0.01911 0.1202
T+12 0.01911 0.1204

The one-period ahead forecast for the volatility (sigma) is 0.1168. Since we assume a normal distribution, the 99% VaR can be calculated using the 99% quantile (type in qnorm(0.99)) of the standard normal distribution. The one-month 99% VaR estimate for the next period is hence qnorm(0.99)*0.1168 = 0.2717. Hence, with 99% probability the monthly return is above -27%.

Summary


In this chapter, we have applied R to selected problems in time series analysis. We covered the different ways of representing time series data, used an ARMA model to forecast house prices, improved our basic minimum variance hedge ratio using a cointegration relationship, and employed a GARCH model for risk management purposes. In the next chapter, you'll learn how you can use R for constructing an optimal portfolio.

Left arrow icon Right arrow icon

Key benefits

  • Use time series analysis to model and forecast house prices
  • Estimate the term structure of interest rates using prices of government bonds
  • Detect systemically important financial institutions by employing financial network analysis

Description

Introduction to R for Quantitative Finance will show you how to solve real-world quantitative fi nance problems using the statistical computing language R. The book covers diverse topics ranging from time series analysis to fi nancial networks. Each chapter briefl y presents the theory behind specific concepts and deals with solving a diverse range of problems using R with the help of practical examples.This book will be your guide on how to use and master R in order to solve quantitative finance problems. This book covers the essentials of quantitative finance, taking you through a number of clear and practical examples in R that will not only help you to understand the theory, but how to effectively deal with your own real-life problems.Starting with time series analysis, you will also learn how to optimize portfolios and how asset pricing models work. The book then covers fixed income securities and derivatives such as credit risk management.

Who is this book for?

If you are looking to use R to solve problems in quantitative finance, then this book is for you. A basic knowledge of financial theory is assumed, but familiarity with R is not required. With a focus on using R to solve a wide range of issues, this book provides useful content for both the R beginner and more experience users.

What you will learn

  • How to model and forecast house prices and improve hedge ratios using cointegration and model volatility
  • How to understand the theory behind portfolio selection and how it can be applied to real-world data
  • How to utilize the Capital Asset Pricing Model and the Arbitrage Pricing Theory
  • How to understand the basics of fixed income instruments
  • You will discover how to use discrete- and continuous-time models for pricing derivative securities
  • How to successfully work with credit default models and how to model correlated defaults using copulas
  • How to understand the uses of the Extreme Value Theory in insurance and fi nance, model fitting, and risk measure calculation

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 22, 2013
Length: 164 pages
Edition : 1st
Language : English
ISBN-13 : 9781783280940
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Nov 22, 2013
Length: 164 pages
Edition : 1st
Language : English
ISBN-13 : 9781783280940
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 147.97
Introduction to R for Quantitative Finance
$43.99
Mastering R for Quantitative Finance
$54.99
Python for Finance
$48.99
Total $ 147.97 Stars icon
Banner background image

Table of Contents

9 Chapters
Time Series Analysis Chevron down icon Chevron up icon
Portfolio Optimization Chevron down icon Chevron up icon
Asset Pricing Models Chevron down icon Chevron up icon
Fixed Income Securities Chevron down icon Chevron up icon
Estimating the Term Structure of Interest Rates Chevron down icon Chevron up icon
Derivatives Pricing Chevron down icon Chevron up icon
Credit Risk Management Chevron down icon Chevron up icon
Extreme Value Theory Chevron down icon Chevron up icon
Financial Networks Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.2
(20 Ratings)
5 star 35%
4 star 0%
3 star 30%
2 star 15%
1 star 20%
Filter icon Filter
Top Reviews

Filter reviews by




NazHus Jan 30, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is ideal for those who are looking to use R to solve financial and statistical problems. However basic knowledge of financial theory is a needed. The authors do a great job on applying R to financial scenarios. Concepts are covered in a clear and concise manner. Perfect for beginners and Intermediates.
Amazon Verified review Amazon
Amazon Customer May 20, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
excellent
Amazon Verified review Amazon
Mauricio E. Ruiz Font Feb 05, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
El autor aclara que no se necesita saber R, pero eso no quiere decir que el libro vaya a empezar dando una introducción, se aprende sobre la lectura. no esperes encontrar un capitulo de introducción a R.
Amazon Verified review Amazon
D. Wong Jan 05, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I really enjoyed this book. After working through the problems several times I realized how powerful R was and how many tools that are at my disposal. I think the author gives a great spread of very common financial calculations with repeatable examples. I am not am professional in any way but really felt it was good for someone who had a basic knowledge of quantitative finance and was looking to see how to apply that in R.Overall I think i got a great deal out of this book and it gives me much more confidence in working with R. Espeically for people just getting into either quant finance or working in RUsing the kindle version, i did have some annoying problems with the code. Because of 2 things. First off there are + signs on every line which is how its outputted in R, which you must remove. Also the kindle cut/paste function always gives the copyright and location. Which you have to delete out of every time you cut and paste. Its not really the authors fault just a quirk of the kindle cut and paste system. I did not subtract a star for this because of the kindle interface, however i can see where someone else would.
Amazon Verified review Amazon
David O'Brien Jan 13, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have a lot of experience with R, but am just starting to get into quantitative finance, as such, I found it very difficult to comprehend a lot of the chapters. Typically each page would have at least 1 or 2 terms that I would end up having to google. So you can imagine that the going was pretty slow. But the book is designed for people with some finance background.Even though I didn't get as much as I was hoping to initially, I think it's going to be a very handy resource for me to have. When I'm going to do an analysis covered by this book, I'm going to look at the examples as a primer to get going on the task. One of the hardest parts about R is finding the right function or package for a specific task. This book lays everything out there for me. And even if I'm going alter the analysis somehow, it's a huge time saver to have all the main functions in one place with cool examples.I think this book is perfect for someone who is familiar with finance and wants to switch languages to R, or maybe for finance students who don't know a statistical language (with maybe another resource for the basics of R). I'm going to take a free coursera course in finance and then come back to this book. Once I have more background, the book should be a good primer for new ideas for me.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.