Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Transfer Learning with Python

You're reading from   Hands-On Transfer Learning with Python Implement advanced deep learning and neural network models using TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788831307
Length 438 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Nitin Panwar Nitin Panwar
Author Profile Icon Nitin Panwar
Nitin Panwar
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Tamoghna Ghosh Tamoghna Ghosh
Author Profile Icon Tamoghna Ghosh
Tamoghna Ghosh
Dipanjan Sarkar Dipanjan Sarkar
Author Profile Icon Dipanjan Sarkar
Dipanjan Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Machine Learning Fundamentals FREE CHAPTER 2. Deep Learning Essentials 3. Understanding Deep Learning Architectures 4. Transfer Learning Fundamentals 5. Unleashing the Power of Transfer Learning 6. Image Recognition and Classification 7. Text Document Categorization 8. Audio Event Identification and Classification 9. DeepDream 10. Style Transfer 11. Automated Image Caption Generator 12. Image Colorization 13. Other Books You May Enjoy

Feature selection

The process of feature extraction and engineering helps us extract as well as generate features from underlying datasets. There are cases where this leads to large inputs to an algorithm for processing. It such cases, it is suspected that many of the features in the input might be redundant and may lead to complex models and even overfitting. Feature selection is the process of identifying representative features from the complete feature set that is available/generated. The selected set of features are expected to contain the required information such that the algorithm is able to solve the given task without running into processing, complexity, and overfitting issues. Feature selection also helps in better understanding the data that is being used for the modeling process along with making processing quicker.

Feature selection methods can be broadly classified into the following three categories:

  • Filter methods: As the name suggests, these methods help us rank features based on a statistical score. We then select a subset of these features. These methods are usually not concerned with model outputs, rather evaluating features independently. Threshold based techniques and statistical tests such as correlation coefficients and chi-squared tests are some popular choices.
  • Wrapper methods: These methods perform a comparative search on the performance of different combinations of subsets of features, and then help us select the best performing subset. Backward selection and forward elimination are two popular wrapper methods for feature selection.
  • Embedded methods: These methods provide the best of the preceding two methods by learning which subset of features would be the best. Regularization and tree based methods are popular choices.

Feature selection is an important aspect in the process of building a ML system. It is also one of the major sources of biases that can get into the system if not handled with care. Readers should note that feature selection should be done using a dataset separate from your training dataset. Utilizing the training dataset for feature selection would invariably lead to overfitting, while utilizing the test set for feature selection would overestimate the model's performance.

Most popular libraries provide a wide array of feature selection techniques. Libraries such as scikit-learn provide these methods out of the box. We will see and utilize many of them in subsequent sections/chapters.

You have been reading a chapter from
Hands-On Transfer Learning with Python
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781788831307
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime