Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models to get accurate results and enhance decision-making processes

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838985097
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Section 2: Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Section 3: Real-World Applications
11. Chapter 8: Using Simulation Models for Financial Engineering 12. Chapter 9: Simulating Physical Phenomena Using Neural Networks 13. Chapter 10: Modeling and Simulation for Project Management 14. Chapter 11: What's Next? 15. Other Books You May Enjoy

Preface

Simulation modeling helps you to create digital prototypes of physical models to analyze how they work and predict their performance in the real world. With this comprehensive guide, you’ll learn about various computational statistical simulations using Python.

Starting with the fundamentals of simulation modeling, you’ll learn about concepts such as randomness and explore data generating processes, resampling methods, and bootstrapping techniques. You’ll then cover key algorithms such as Monte Carlo simulations and the Markov Decision Process, which are used to develop numerical simulation models, and discover how they can be used to solve real-world problems. As you make progress, you’ll develop simulation models to help you get accurate results and enhance decision-making processes. Using optimization techniques, you’ll learn to modify the performance of a model to improve results and make optimal use of resources. The book will guide you through creating a digital prototype using practical use cases for financial engineering, prototyping project management to improve planning, and simulating physical phenomena using neural networks.

By the end of this book, you’ll be able to construct and deploy simulation models of your own to solve real-world challenges.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime