Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On ROS for Robotics Programming

You're reading from   Hands-On ROS for Robotics Programming Program highly autonomous and AI-capable mobile robots powered by ROS

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838551308
Length 432 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Bernardo Ronquillo Japón Bernardo Ronquillo Japón
Author Profile Icon Bernardo Ronquillo Japón
Bernardo Ronquillo Japón
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Physical Robot Assembly and Testing
2. Assembling the Robot FREE CHAPTER 3. Unit Testing of GoPiGo3 4. Getting Started with ROS 5. Section 2: Robot Simulation with Gazebo
6. Creating the Virtual Two-Wheeled ROS Robot 7. Simulating Robot Behavior with Gazebo 8. Section 3: Autonomous Navigation Using SLAM
9. Programming in ROS - Commands and Tools 10. Robot Control and Simulation 11. Virtual SLAM and Navigation Using Gazebo 12. SLAM for Robot Navigation 13. Section 4: Adaptive Robot Behavior Using Machine Learning
14. Applying Machine Learning in Robotics 15. Machine Learning with OpenAI Gym 16. Achieve a Goal through Reinforcement Learning 17. Assessment 18. Other Books You May Enjoy

Technical requirements

For the examples in this chapter, we will use TensorFlow (https://www.tensorflow.org/), the ML framework open-sourced by Google in 2015, which has become the big brother in the data science community because of all of the people involved as active developers or end users.

The main TensorFlow API is developed in Python and is the one we are going to use. To install it, we need to have the well-known pip Python package manager in our system. Even though it comes bundled with the Ubuntu OS, we provide the instructions for installing it. Later, we will cover the TensorFlow installation process.

Let's first provide the path for the code of this chapter, and then describe the step-by-step procedure to configure your laptop with TensorFlow.

In this chapter, we will make use of the code located in the Chapter10_Deep_Learning_ folder at https://github.com/PacktPublishing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime