Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Music Generation with Magenta

You're reading from   Hands-On Music Generation with Magenta Explore the role of deep learning in music generation and assisted music composition

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher
ISBN-13 9781838824419
Length 360 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexandre DuBreuil Alexandre DuBreuil
Author Profile Icon Alexandre DuBreuil
Alexandre DuBreuil
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction to Artwork Generation
2. Introduction to Magenta and Generative Art FREE CHAPTER 3. Section 2: Music Generation with Machine Learning
4. Generating Drum Sequences with the Drums RNN 5. Generating Polyphonic Melodies 6. Latent Space Interpolation with MusicVAE 7. Audio Generation with NSynth and GANSynth 8. Section 3: Training, Learning, and Generating a Specific Style
9. Data Preparation for Training 10. Training Magenta Models 11. Section 4: Making Your Models Interact with Other Applications
12. Magenta in the Browser with Magenta.js 13. Making Magenta Interact with Music Applications 14. Assessments 15. Other Books You May Enjoy

Technical requirements

In this chapter, we'll use the following tools:

  • A command line or Bash to launch Magenta from the Terminal
  • Python and its libraries
  • The Python multiprocessing module for multi-threaded data preparation
  • Matplotlib to plot our data preparation results
  • Magenta to launch data pipeline conversion
  • MIDI, ABCNotation, and MusicXML as data formats
  • External APIs such as Last.fm

In Magenta, we'll make use of data pipelines. We will explain these in depth later in this chapter, but if you feel like you need more information, the pipeline README file in Magenta's source code (github.com/tensorflow/magenta/tree/master/magenta/pipelines) is a good place to start. You can also take a look at Magenta's code, which is well documented. There's also additional content in the Further reading section.

The code for this chapter can be found in this book...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image