In the previous sections, we have learned how to use auxiliary information such as the labels of data to improve the image quality generated by GANs. However, it is not always possible to prepare accurate labels of training samples beforehand. Sometimes, it is even difficult for us to accurately describe the labels of extremely complex data. In this section, we will introduce another excellent model from the GAN family, InfoGAN, which is capable of extracting data attributes during training in an unsupervised manner. InfoGAN was proposed by Xi Chen, Yan Duan, Rein Houthooft, et. al. in their paper, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. It showed that GANs could not only learn to generate realistic samples but also learn semantic features, which are essential to sample...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand