Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning for Games

You're reading from   Hands-On Deep Learning for Games Leverage the power of neural networks and reinforcement learning to build intelligent games

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781788994071
Length 392 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Micheal Lanham Micheal Lanham
Author Profile Icon Micheal Lanham
Micheal Lanham
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: The Basics
2. Deep Learning for Games FREE CHAPTER 3. Convolutional and Recurrent Networks 4. GAN for Games 5. Building a Deep Learning Gaming Chatbot 6. Section 2: Deep Reinforcement Learning
7. Introducing DRL 8. Unity ML-Agents 9. Agent and the Environment 10. Understanding PPO 11. Rewards and Reinforcement Learning 12. Imitation and Transfer Learning 13. Building Multi-Agent Environments 14. Section 3: Building Games
15. Debugging/Testing a Game with DRL 16. Obstacle Tower Challenge and Beyond 17. Other Books You May Enjoy

Understanding visual state

RL is a very powerful algorithm, but can become very computationally complex when we start to look at massive state inputs. To account for massive states, many powerful RL algorithms use the concept of model-free or policy-based learning, something we will cover in a later chapter. As we already know, Unity uses a policy-based algorithm that allows it to learn any size of state space by generalizing to a policy. This allows us to easily input a state space of 15 vectors in the example we just ran to something more massive, as in the VisualHallway example.

Let's open up Unity to the VisualHallway example scene and look at how to reduce the visual input space in the following exercise:

  1. With the VisualHallway scene open, locate the HallwayLearningBrain in the Assets | ML-Agents | Examples | Hallway | Brains folder and select it.
  2. Modify the Brain Parameters...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image