Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Distributed Computing with Python
Distributed Computing with Python

Distributed Computing with Python: Harness the power of multiple computers using Python through this fast-paced informative guide

eBook
$9.99 $29.99
Paperback
$38.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Distributed Computing with Python

Chapter 2. Asynchronous Programming

In this chapter, we are finally going to write some code! The code in this chapter and all the chapters that follow is written for Python 3.5 (the current release at the time of writing). When modules, syntaxes, or language constructs are not available in earlier versions of Python (for example, Python 2.7), these will be pointed out in this chapter. In general, however, the code presented here should work on Python 2.x with some minor modifications.

Let's go back to some of the ideas presented in the previous chapter. We know that we can structure our algorithms and programs so that they can run on a local machine or on one or more computers across a network. Even when our code runs on a single machine, as we saw, we can use multiple threads and/or multiple processes so that its various parts can run at the same time on multiple CPUs.

We will now pause thinking about multiple CPUs and instead look at a single thread/process of execution...

Coroutines

In Python, the key to being able to suspend the execution of a function midway through is the use of coroutines, as we will see in this section. In order to understand coroutines, one needs to understand generators, and in order to understand those, one needs to have a grasp of iterators!

Most Python programmers are familiar with the concept of iterating some sort of collection (for example, strings, lists, tuples, file objects, and so on):

>>> for i in range(3):
...     print(i)
... 
0
1
2
>>> for line in open('exchange_rates_v1.py'):
...     print(line, end='')
... 
#!/usr/bin/env python3
import itertools
import time
import urllib.request

The reason why we can iterate all sorts of objects and not just lists or strings is the iteration protocol. The iteration protocol defines a standard interface for iteration: an object that implements __iter__ and __next__ (or __iter__ and next in Python 2.x) is an iterator and, as the name suggests...

An asynchronous example

To keep things simple but still interesting, let's write a tool that, given a text file, will count the occurrences of a given word. This example builds on the silly coroutine that we implemented in the previous section, adding some useful behavior to it.

It should be noted that, at least on a Linux or Mac OS X machine, one can achieve the same result very simply using the grep command, as we will see. Let's start by downloading a significantly large text that we will use as input data for our experiments. Let's just choose a public domain book from Project Gutenberg: War and Peace by Leo Tolstoy, which is freely available at http://www.gutenberg.org/cache/epub/2600/pg2600.txt.

The following snippet shows how we can download this text very easily:

$ curl -sO http://www.gutenberg.org/cache/epub/2600/pg2600.txt
$ wc pg2600.txt
   65007  566320 3291648 pg2600.txt

Next, we will start by counting the number of occurrences of the word love, regardless of case...

Summary

Python has had support for asynchronous programming since version 1.5.2, with the introduction of the asyncore and asynchat modules for asynchronous network programming. Version 2.5 introduced the ability to send data to coroutines via yield expressions, allowing us to write asynchronous code in a simpler but more powerful way. Python 3.4 introduced a new library for asynchronous I/O called asyncio.

Python 3.5 introduced true coroutine types via async def and await. Interested readers are encouraged to explore these new developments. One word of warning though: asynchronous programming is a powerful tool that can dramatically improve the performance of I/O-intensive code. It does not come without issues, though, the main of which is complexity.

Any important asynchronous code has to carefully select nonblocking libraries in order to avoid using blocking code. It has to implement a coroutine scheduler (since the OS does not schedule coroutines for us like it does with threads), which...

Left arrow icon Right arrow icon

Key benefits

  • You'll learn to write data processing programs in Python that are highly available, reliable, and fault tolerant
  • Make use of Amazon Web Services along with Python to establish a powerful remote computation system
  • Train Python to handle data-intensive and resource hungry applications

Description

CPU-intensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications. This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.

Who is this book for?

This book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPU-intensive data processing tasks.

What you will learn

  • Get an introduction to parallel and distributed computing
  • See synchronous and asynchronous programming
  • Explore parallelism in Python
  • Distributed application with Celery
  • Python in the Cloud
  • Python on an HPC cluster
  • Test and debug distributed applications

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 12, 2016
Length: 170 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887048
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Apr 12, 2016
Length: 170 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887048
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 142.97
Learning Predictive Analytics with Python
$54.99
Distributed Computing with Python
$38.99
Designing Machine Learning Systems with Python
$48.99
Total $ 142.97 Stars icon
Banner background image

Table of Contents

9 Chapters
1. An Introduction to Parallel and Distributed Computing Chevron down icon Chevron up icon
2. Asynchronous Programming Chevron down icon Chevron up icon
3. Parallelism in Python Chevron down icon Chevron up icon
4. Distributed Applications – with Celery Chevron down icon Chevron up icon
5. Python in the Cloud Chevron down icon Chevron up icon
6. Python on an HPC Cluster Chevron down icon Chevron up icon
7. Testing and Debugging Distributed Applications Chevron down icon Chevron up icon
8. The Road Ahead Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(3 Ratings)
5 star 66.7%
4 star 0%
3 star 33.3%
2 star 0%
1 star 0%
Hugo Jun 20, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Es werden die wichtigsten Mechanismen des distributed/parallel computing gut erklärt.
Amazon Verified review Amazon
Stefan Mar 23, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I needed a crash course on distributed programming and I got it out of this book. I had a week to learn about concurrency, threading, multiprocessing and how they are implemented in Python and I suceeded with this. I feel confident to jump into harder texts and tutorials and other frameworks now. This book will *not* give you an in-depth coverage of the topics, it is only about 120 pages of content. Perfect for my purpose, thank you.
Amazon Verified review Amazon
Phil Dec 18, 2017
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
This is a very light introduction to distributed computing with Python, which could really do with more information. It introduces important concepts but then moves straight on without getting into any detail. (ie. it mentions two communication methods between processes in the multiprocessing module, pipes and queues, and then ignores pipes altogether). If you've never touched distributing computing this might be a good starting point, but the python docs for the modules give far more detail and are almost as accessible (and free). Additionally there are quite a few errors in the book, at least one of which says the exact opposite of what it should, which might be very confusing for a reader.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.