In this chapter, we will demonstrate some examples of different variations of autoencoders using the MNIST dataset. As a concrete example, suppose the inputs x are the pixel intensity values from a 28 x 28 image (784 pixels); so the number of input data samples is n=784. There are s2=392 hidden units in layer L2. And since the output will be of the same dimensions as the input data samples, y ∈ R784. The number of neurons in the input layer will be 784, followed by 392 neurons in the middle layer L2; so the network will be a lower representation, which is a compressed version of the output. The network will then feed this compressed lower representation of the input a(L2) ∈ R392 to the second part of the network, which will try hard to reconstruct the input pixels 784 from this compressed version.
Autoencoders rely on the fact that the input...