Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Wrangling with R

You're reading from   Data Wrangling with R Load, explore, transform and visualize data for modeling with tidyverse libraries

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781803235400
Length 384 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gustavo Santos Gustavo Santos
Author Profile Icon Gustavo Santos
Gustavo Santos
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Load and Explore Data
2. Chapter 1: Fundamentals of Data Wrangling FREE CHAPTER 3. Chapter 2: Loading and Exploring Datasets 4. Chapter 3: Basic Data Visualization 5. Part 2: Data Wrangling
6. Chapter 4: Working with Strings 7. Chapter 5: Working with Numbers 8. Chapter 6: Working with Date and Time Objects 9. Chapter 7: Transformations with Base R 10. Chapter 8: Transformations with Tidyverse Libraries 11. Chapter 9: Exploratory Data Analysis 12. Part 3: Data Visualization
13. Chapter 10: Introduction to ggplot2 14. Chapter 11: Enhanced Visualizations with ggplot2 15. Chapter 12: Other Data Visualization Options 16. Part 4: Modeling
17. Chapter 13: Building a Model with R 18. Chapter 14: Build an Application with Shiny in R 19. Conclusion 20. Other Books You May Enjoy

Treating missing data

Usually, those observations won’t be valid for statistics calculations, as there is no value present. Therefore, despite having calculated the descriptive statistics before handling the missing values, it won’t affect our results or insights. However, for the continuation of the data analysis, we must handle the NA values to understand whether those carry a meaning or not and then decide how to proceed with them.

A missing data point is also information. It can mean that the data was erroneously missed by human or system error, or it can mean that a person did not respond to a question, for example. So, if we were dealing with a system log and seeing a bunch of NA values, it would be necessary to check whether the measurements were being correctly registered or whether those missing data points should be expected. Another example to be considered: on poll data, if there are a lot of missing answers, it can be either that nobody is answering the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image