Introduction
In the previous chapter, we used XGBoost to push model performance even higher than all our previous efforts and learned how to explain model predictions using SHAP values. Now, we will consider model building to be complete and address the remaining issues that need attention before delivering the model to the client. The key elements of this chapter are analysis of the test set, including financial analysis, and things to consider when delivering a model to a client who wants to use it in the real world.
We look at the test set to get an idea of how well the model will perform in the future. By calculating metrics we already know, like the ROC AUC, but now on the test set, we can gain confidence that our model will be useful for new data. We'll also learn some intuitive ways to visualize the power of the model for grouping customers into different levels of risk of default, such as a decile chart.
Your client will likely appreciate the efforts you made in...