Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Web3

You're reading from   Data Science for Web3 A comprehensive guide to decoding blockchain data with data analysis basics and machine learning cases

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781837637546
Length 344 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabriela Castillo Areco Gabriela Castillo Areco
Author Profile Icon Gabriela Castillo Areco
Gabriela Castillo Areco
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1 Web3 Data Analysis Basics
2. Chapter 1: Where Data and Web3 Meet FREE CHAPTER 3. Chapter 2: Working with On-Chain Data 4. Chapter 3: Working with Off-Chain Data 5. Chapter 4: Exploring the Digital Uniqueness of NFTs – Games, Art, and Identity 6. Chapter 5: Exploring Analytics on DeFi 7. Part 2 Web3 Machine Learning Cases
8. Chapter 6: Preparing and Exploring Our Data 9. Chapter 7: A Primer on Machine Learning and Deep Learning 10. Chapter 8: Sentiment Analysis – NLP and Crypto News 11. Chapter 9: Generative Art for NFTs 12. Chapter 10: A Primer on Security and Fraud Detection 13. Chapter 11: Price Prediction with Time Series 14. Chapter 12: Marketing Discovery with Graphs 15. Part 3 Appendix
16. Chapter 13: Building Experience with Crypto Data – BUIDL 17. Chapter 14: Interviews with Web3 Data Leaders 18. Index 19. Other Books You May Enjoy Appendix 1
1. Appendix 2
2. Appendix 3

Introducing deep learning

In Part 2 of this book, we will also use deep learning methodologies when solving the use cases. Deep learning models employ multiple layers of interconnected nodes called neurons, which process input data and produce outputs based on learned weights and activation functions. The connections between neurons facilitate information flow, and the architecture of the network determines how information is processed and transformed.

We will study three types of neural network architectures in detail in their corresponding chapters. For now, let’s introduce the framework and terminology that we will use in them.

The neuron serves as the fundamental building block of the system and can be defined as a node with one or more input values, weights, and output values:

Figure 7.9 – A neuron’s structure

Figure 7.9 – A neuron’s structure

When we stack multiple layers with this structure, it becomes a neural network. This architecture typically consists...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image