Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Marketing Analytics

You're reading from   Data Science for Marketing Analytics A practical guide to forming a killer marketing strategy through data analysis with Python

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781800560475
Length 636 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Vishwesh Ravi Shrimali Vishwesh Ravi Shrimali
Author Profile Icon Vishwesh Ravi Shrimali
Vishwesh Ravi Shrimali
Mirza Rahim Baig Mirza Rahim Baig
Author Profile Icon Mirza Rahim Baig
Mirza Rahim Baig
Gururajan Govindan Gururajan Govindan
Author Profile Icon Gururajan Govindan
Gururajan Govindan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Data Preparation and Cleaning 2. Data Exploration and Visualization FREE CHAPTER 3. Unsupervised Learning and Customer Segmentation 4. Evaluating and Choosing the Best Segmentation Approach 5. Predicting Customer Revenue Using Linear Regression 6. More Tools and Techniques for Evaluating Regression Models 7. Supervised Learning: Predicting Customer Churn 8. Fine-Tuning Classification Algorithms 9. Multiclass Classification Algorithms Appendix

Preprocessing Data for Machine Learning Models

Preprocessing data before training any machine learning model can improve the accuracy of the model to a large extent. Therefore, it is important to preprocess data before training a machine learning algorithm on the dataset. Preprocessing data consists of the following methods: standardization, scaling, and normalization. Let's look at these methods one by one.

Standardization

Most machine learning algorithms assume that all features are centered at zero and have variance in the same order. In the case of linear models such as logistic and linear regression, some of the parameters used in the objective function assume that all the features are centered around zero and have unit variance. If the values of a feature are much higher than some of the other features, then that feature might dominate the objective function and the estimator may not be able to learn from other features. In such cases, standardization can be used to rescale...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image