Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Marketing Analytics

You're reading from   Data Science for Marketing Analytics Achieve your marketing goals with the data analytics power of Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789959413
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Tommy Blanchard Tommy Blanchard
Author Profile Icon Tommy Blanchard
Tommy Blanchard
Debasish Behera Debasish Behera
Author Profile Icon Debasish Behera
Debasish Behera
Pranshu Bhatnagar Pranshu Bhatnagar
Author Profile Icon Pranshu Bhatnagar
Pranshu Bhatnagar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Data Science for Marketing Analytics
Preface
1. Data Preparation and Cleaning 2. Data Exploration and Visualization FREE CHAPTER 3. Unsupervised Learning: Customer Segmentation 4. Choosing the Best Segmentation Approach 5. Predicting Customer Revenue Using Linear Regression 6. Other Regression Techniques and Tools for Evaluation 7. Supervised Learning: Predicting Customer Churn 8. Fine-Tuning Classification Algorithms 9. Modeling Customer Choice Appendix

Classification Problems


Classification problems are the most common type of machine learning problem. Classification tasks are different from regression tasks, in the sense that, in classification tasks, we predict a discrete class label, whereas in the case of regression, we predict continuous values. Another notable difference between classification problems and regression problems lies in the choice of performance metrics. With classification problems, accuracy is commonly chosen as a performance metric, while root mean square is quite common in the case of regression.

There are many important business use cases for classification problems where the dependent variable is not continuous, such as churn and fraud detection. In these cases, the response variable has only two values, that is, churn or not churn, and fraud or not fraud. For example, suppose we are studying whether a customer churns (y = 1) or doesn't churn (y = 0) after signing up for a mobile service contract. Then, the probability...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime